

MISSISSIPPI COTTON

VARIETY TRIALS, 2025

Information Bulletin 602 • January 2026

MISSISSIPPI'S OFFICIAL VARIETY TRIALS

MISSISSIPPI STATE UNIVERSITY™
MS AGRICULTURAL AND
FORESTRY EXPERIMENT STATION

PREFACE

The main objective of the Mississippi Cotton Official Variety Trials (OVT) is to provide unbiased evaluation of yield and fiber performance of commercial and experimental cotton varieties. The ultimate goal is to provide Mississippi producers with adequate information to make well-informed seed selection decisions for cultivation in the major production regions in Mississippi. This Mississippi Agricultural and Forestry Experiment Station information bulletin is a summary of research conducted at numerous on and off station locations throughout Mississippi. The interpretation of these data may change after further experimentation over years or environments. The information included is not to be construed as a recommendation for use or as an endorsement of a particular product or variety by Mississippi State University or the Mississippi Agricultural and Forestry Experiment Station. Trade names of commercial products used in this report are included only to provide greater clarity to the information presented.

Mississippi Cotton Variety Trials, 2025

BRIAN K. PIERALISI

Assistant Professor
Extension Cotton Specialist
Department of Plant and Soil Sciences
Mississippi State University

WILLIAM J. RUTLAND

Extension Associate III
Department of Plant and Soil Sciences
Mississippi State University

LUKE C. NOAH

Research Associate I
Department of Plant and Soil Sciences
Mississippi State University

COREY J. BRYANT

Assistant Professor
Department of Plant and Soil Sciences
Delta Research and Extension Center
Stoneville, Mississippi

TOM W. ALLEN

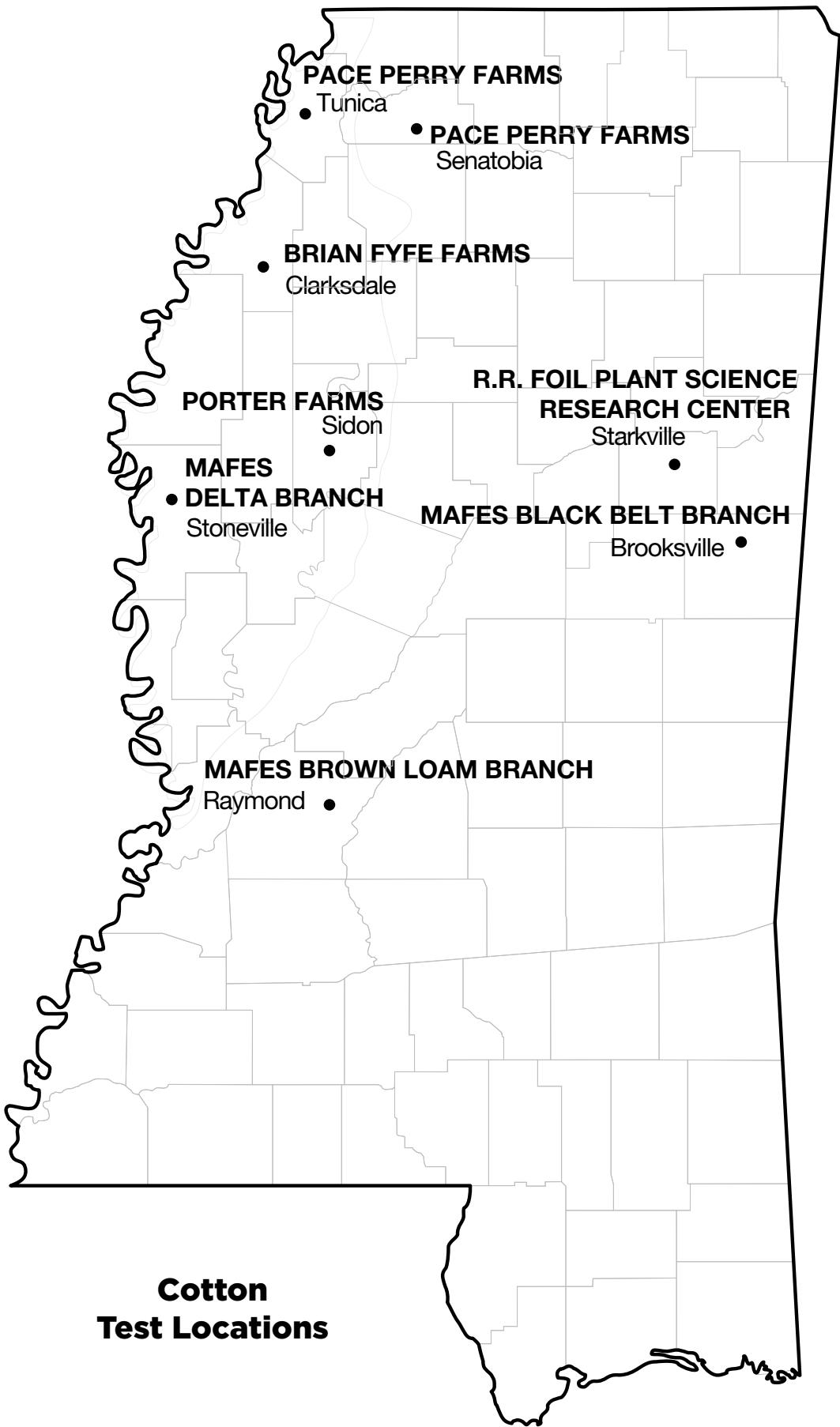
Extension/Research Professor
Department of Agricultural Science and Plant
Protection
Delta Research and Extension Center
Stoneville, Mississippi

AMEE R. BUMGUARDNER

Assistant Professor
Department of Plant and Soil Sciences
North Mississippi Research and Extension Center
Verona, Mississippi

TYLER S. SOIGNIER

Assistant Professor
Department of Plant and Soil Sciences
MAFES Brown Loam Branch
Raymond, Mississippi


The authors would like to express their appreciation first and foremost to the producers who participated in the 2025 Official Cotton Variety Trials that were conducted on-farm. The on-farm trials provide an added benefit to the data by expanding the footprint of the trials into differing areas in the state to better represent the environmental, soil textural, and management differences that are present throughout the state of Mississippi. Thank you to Pace Perry (Senatobia and Tunica), Brian Fyfe (Clarksdale), and Doty Porter (Sidon); your hard work and willingness to participate in the variety trials are deeply valued. We look forward to working with you and other willing producers in the future.

Gratitude is expressed to all the student workers in the agronomy program in the Department of Plant and Soil Sciences at Mississippi State University for your assistance with all aspects of conducting the trials. Without your diligent work and assistance, the variety trials would not be a success. Thanks again for all you do. We would also like to recognize Extension technician Ty Dickson, graduate student Grace Gough, and student workers/interns Mauricio Silveira, Amy Nowicki, Cole Baily, Andrew Finell, Reece Oliver, Blain Vincent, and Aiden Noah for their assistance with planting, harvesting, ginning, and preparing fiber quality samples. Your work allows us to provide data in a timely fashion.

This document was approved for publication as Information Bulletin 602 of the Mississippi Agricultural and Forestry Experiment Station. It was published by Agricultural and Natural Resources Marketing.

Copyright 2026 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi Agricultural and Forestry Experiment Station.

Find variety trial information online at mafes.msstate.edu/variety-trials.

Mississippi Cotton Variety Trials, 2025

INTRODUCTION

Annually, Mississippi State researchers evaluate cotton varieties at numerous locations within the cotton-growing regions in the state. The purpose of the Mississippi Agricultural and Forestry Experiment Station (MAFES) Official Variety Trials is to provide an unbiased comparison of varieties across a range of environments. Trial evaluation of standard, commercially available, and new and upcoming cotton cultivars provides producers with data to make well-informed variety selection decisions based upon how a particular cotton variety performed in their area of operation.

The Official Variety Trial (OVT) for cotton is conducted annually at the Delta Research and Extension Center in

Stoneville, the MAFES R.R. Foil Plant Science Research Center at Mississippi State University, the MAFES Brown Loam branch in Raymond, and at the MAFES Black Belt Branch in Brooksville, as well as at cooperating producer locations in both the Delta and Hill cotton producing regions. At each location, all varieties entered into the trial are treated identical with respect to herbicide and insecticide input to strive for unbiased evaluation of genetic potential. Mississippi State personnel attempt to conduct at minimum seven small-plot official variety trials per year in areas that well represent the majority of the state's cotton producing acreage.

TESTING PROCEDURES

All varieties submitted for testing are grown utilizing chemical control for insect and weed pests. Each test plot consists of two rows of cotton 40 ft in length with a row spacing of 38" or 40". Each plot is analyzed statistically as a randomized complete block with four blocks or replications.

Management practices are determined and implemented by cooperators at each location based on soil texture, soil test value, and pest pressures. However, seeding rate and operation is controlled by the cotton variety testing coordinator. In addition, all locations are maintained free of lepidopteran insect pests in order to create parity among varieties with differing Bt technologies.

All fiber parameters such as lint percent as well as

HVI fiber quality assessment are based upon a hand-picked 25-boll sample or a random grab sample from each replicated plot at each location. Samples from all locations are ginned on the same 10-saw Continental laboratory gin to determine gin turnout. Utilization of the same gin for all samples is important to not bias fiber quality across locations. High Volume Instrumentation (HVI) analysis for fiber property determinations are conducted by the United States Department of Agriculture Classing Office in Memphis, TN.

Lint yields are calculated using the seed cotton weight mechanically harvested from each plot, and the turnout percentage determined from hand-picked boll samples. Mean lint yields are presented as pounds of lint per acre.

INTERPRETING THE DATA

Field variability is inherent to production research with any cropping system. Unlike strip trials, small plot research allows for replication with a very minimal footprint. The smaller area and replication of treatments helps reduce variability due to various factors commonly found in the field (i.e. soil textural changes, pest variations). Reduced variability lends us a greater understanding of a varieties genetic potential cultivated under uniform conditions. However, strip trial research may lend greater information about how a variety will perform across a range of conditions (e.g. low spot in the field). Data from both small plot and strip trials should be considered when making final variety selection decisions.

Mississippi State separates the greatest performing varieties by use of a Fisher's Protected Least Significant Difference (LSD) at a five percent level of significance.

The LSD associated with the five percent level lends us 95 percent positive identification of the greatest yielding varieties at each specific location. In each individual trial, the collection of varieties that yield the greatest statistically is represented in bold. These varieties will all have a numerical difference less than the LSD value shown at the bottom of the data variable columns.

The varieties listed in bold may have slightly differing numerical yields but will perform very similarly at a given location. Producers should review data tables for the geographically closest location that is representative of their operation, but should also review yield information across locations to get an idea of a variety's yield stability over a wide range of production environments.

SELECTING A VARIETY/TRAIT

Cultivar selection is one of the most important management decisions a producer must make each growing season. Improper variety selection generally cannot be overcome with management. Starting with the greatest genetic potential will generally produce the highest yield with all other things being considered equal. Careful consideration should go into selecting varieties that are well adapted to the Mid-South growing region and to certain geographical regions within the state due to the rising cost of seed and associated technology fees.

Multiple available transgenic traits can make selecting a variety cumbersome. At most locations, the top yielding varieties represent a range of available trait packages. This lends the producer multiple options to choose from with respect to herbicide and insecticide traits. Below is a synopsis of the transgenic traits that were represented in this year's trials.

Glyphosate tolerance - generally indicated on the seed bag with either a G, RF, XF, or FE. Varieties with these designations can tolerate over the top applications of

glyphosate. XtendFlex (XF) varieties are also tolerant to glufosinate and dicamba. Enlist (FE) varieties are also tolerant to glufosinate and 2,4-D. Always read and follow label directions. For more information on utilizing herbicide resistant traits and alternative weed control practices consult MSU extension publication #1532 "Weed Control Guidelines for Mississippi" available online at <http://extension.msstate.edu/publications/weed-control-guidelines-for-mississippi>.

Glufosinate tolerance - generally indicated on the seed bag with an LL. These varieties can withstand over the top applications of Liberty. XtendFlex (XF) varieties are also tolerant to glyphosate and dicamba. Enlist (FE) varieties are also tolerant to glyphosate and 2,4-D. It is important to note that producers utilizing a multitude of varieties with differing herbicide tolerant traits in close proximity must use caution to avoid crop injury from spray drift, improperly cleaned applicators, or a combination of both. Always read and follow label directions. For more information on utilizing herbicide resistant traits and alternative weed control practices, consult MSU extension publication #1532 "Weed Control

Guidelines for Mississippi" available online at <http://extension.msstate.edu/publications/weed-control-guidelines-for-mississippi>.

Dicamba tolerance – generally indicated on the seed bag with an XF. Varieties with these designations can tolerate over the top applications of Dicamba as well as glyphosate and glufosinate. Always read and follow label directions. For more information on utilizing herbicide resistant traits and alternative weed control practices, consult MSU extension publication #1532 "Weed Control Guidelines for Mississippi" available online at <http://extension.msstate.edu/publications/weed-control-guidelines-for-mississippi>.

2,4-D tolerance – generally indicated on the seed bag with a FE. Varieties with these designations can tolerate over the top applications of 2,4-D as well as glyphosate and glufosinate. Always read and follow label directions. For more information on utilizing herbicide resistant traits and alternative weed control practices, consult MSU extension publication #1532 "Weed Control Guidelines for Mississippi" available online at <http://extension.msstate.edu/publications/weed-control-guidelines-for-mississippi>.

Isoxaflutole tolerance – generally indicated on the seed bag with an AX. Varieties with these designations can tolerate over the top applications of Isoxaflutole as well as glyphosate, glufosinate, and dicamba. Always read and follow label directions. For more information on utilizing herbicide resistant traits and alternative weed control practices, consult MSU extension publication #1532 "Weed Control Guidelines for Mississippi" available online at <http://extension.msstate.edu/publications/weed-control-guidelines-for-mississippi>.

Bollgard 2 – Varieties with designations B2 on the seed bag or in the brand name contain genes that produce protein toxic to heliothis. However, under high and persistent pressure supplemental chemical control strategies are necessary to prevent economic damage from caterpillar pests. For more information on utilization of transgenic traits with insecticidal properties, consult MSU extension publication #2471 "Insect control guide for agronomic crops" available online at <https://extension.msstate.edu/publications/2026-insect-control-guide-for-agronomic-crops>.

Bollgard 3 – Varieties with designations B3 on the seed bag or in the brand name contain genes that produce

protein toxic to heliothis. For more information on utilization of transgenic traits with insecticidal properties, consult MSU extension publication #2471 "Insect control guide for agronomic crops" available online at <https://extension.msstate.edu/publications/2026-insect-control-guide-for-agronomic-crops>.

WideStrike – varieties with the designation W on the bag or in the variety name. Like Bollgard 2, WideStrike varieties contain two genes that produce proteins toxic to caterpillar pests. For more information on utilization of transgenic traits with insecticidal properties, consult MSU extension publication #2471 "Insect control guide for agronomic crops" available online at <https://extension.msstate.edu/publications/2026-insect-control-guide-for-agronomic-crops>.

WideStrike 3 – varieties with the designation W3 on the bag or in the variety name. Like Bollgard 3, WideStrike varieties contain three genes that produce proteins toxic to caterpillar pests. For more information on utilization of transgenic traits with insecticidal properties consult MSU extension publication #2471 "Insect control guide for agronomic crops" available online at <https://extension.msstate.edu/publications/2026-insect-control-guide-for-agronomic-crops>.

TwinLink – varieties with the designation T on the bag or in the variety name. Like Bollgard 2 or WideStrike, TwinLink varieties contain two genes that produce proteins toxic to caterpillar pests. For more information on utilization of transgenic traits with insecticidal properties, consult MSU extension publication #2471 "Insect control guide for agronomic crops" available online at <https://extension.msstate.edu/publications/2026-insect-control-guide-for-agronomic-crops>.

TwinLink Plus – varieties with the designation TP on the bag or in the variety name. Like Bollgard 3 or WideStrike 3, TwinLink Plus varieties contain three genes that produce proteins toxic to caterpillar pests. For more information on utilization of transgenic traits with insecticidal properties, consult MSU extension publication #2471 "Insect control guide for agronomic crops" available online at <https://extension.msstate.edu/publications/2026-insect-control-guide-for-agronomic-crops>.

ThryvOn – Varieties with designations T on the seed bag or in the brand name contain genes that produce toxins

that suppress *Frankliniella fusca* and *lygus spp.* species. For more information on utilization of transgenic traits with insecticidal properties consult MSU extension publication #2471 “Insect control guide for agronomic

crops” available online at <https://extension.msstate.edu/publications/2026-insect-control-guide-for-agronomic-crops>.

CONSIDERATIONS FOR SELECTION

Yield performance among common varieties evaluated over multiple locations, environments, or years will normally vary. Therefore, selection decisions should be made from within the range of top yielding varieties. Newer varieties with limited available data should be cultivated to minimal acreage until further testing validates performance across multiple years and locations. Generally, there is no one variety that is the ‘silver bullet’; therefore, choosing multiple varieties allows for flexibility in relative maturity, management decisions, and risk aversion.

Lint yield and potential profitability should be the primary factor when attempting to select a variety, but do not discount fiber quality and traits contained within a given variety. Do not underestimate the

discounts associated with high micronaire, which can be significant.

A good performance indicator when selecting a variety is the overall mean of the trial. Comparing an individual variety to the trial mean can lend an indication of how that particular variety “stacked up” to the trial as a whole. A variety with a mean lint yield greater or much greater than the overall trial mean generally will perform well.

Remember, there can be a full 14-day difference in maturity between cotton varieties. However, most leading varieties, including those submitted to this year’s trial, tend to be more mid- to early-maturing than varieties of the past.

LOAN VALUATION DECISION AID

For each trial conducted in 2025, data were submitted to the upland cotton loan valuation aid. This tool was developed by Dr. Larry Falconer and is supported by Cotton Incorporated. The tool allows for the calculation

of Commodity Credit Corporation cotton loan premium and discount values based on yields and HVI classing information.

TOP YIELDING VARIETIES

There are numerous methods to pick or highlight the top-yielding varieties across locations to develop a “short list” of promising varieties for future plantings. For soybean and corn, the short list is a powerful aid in selecting varieties due to the sheer number of available varieties. However, for cotton, the list of available varieties that perform well and are adapted to the Mid-

South is short on its own. The recent trend in cotton varieties submitted for testing to University OVT trials across the Mid-South has declined over the last ten years, with changes in the cotton industry. Therefore, it is important to select a variety that has performed well in the Mississippi OVT or other Mid-South university OVT trial.

PLANTING AND HARVEST DATES

Location	Planting Date	Harvest Date	Seeding Rate
Brooksville	June 6, 2025	November 3, 2025	45,000
Clarksdale	May 16, 2025	October 24, 2025	45,000
Raymond	May 19, 2025	October 9, 2025	45,000
Senatobia	June 4, 2025	October 15, 2025	45,000
Sidon	June 4, 2025	October 17, 2025	45,000
Starkville	May 22, 2025	November 3, 2025	45,000
Stoneville	May 21, 2025	November 18, 2025	45,000
Tunica	May 16, 2025	October 15, 2025	45,000

PERFORMANCE TABLES FOR TESTING VARIETIES

Table 1. Varieties submitted for testing by participating industry partners, 2025.		
Industry Contact	Official Variety Trial Entries	
Americot Inc. – NexGen Varieties Mike Robinson	NG 4626 B3XF NG 4611 B3XF	
Winnfield Solutions LLC – Armor Varieties Robert Cossar	Amor 9371 B3XF Armor 25X963 B3TXF Amor 25X968 B3TXF	
PhytoGen Seed Co. Ben Maddox	PHY411W3FE PHY415W3FE PX1140F330-04W3FE PX1140H138-04W3FE PX1140H143-04W3FE PX1140H150-04W3FE	PX1140H152-04W3FE PX1150H164-04W3FE PX1150H167-04W3FE PHY357W3FE PHY433W3FE
BASF – Stoneville Varieties Andy White	ST 6000AXTP ST 4215AXTP ST 4833AXTP ST 5855AXTP ST 5931AXTP BX 2634AXTP	BX 2660AXTP BX 2662AXTP BX 2643AXTP BX 2636AXTP BX 2665AXTP BX 2666AXTP
Bayer - DeltaPine Varieties Tim Dabbert	DP 2127 B3XF DP 2333 B3XF DP 2328 B3TXF	24R6012B3TXF 24R6815B3TXF 24R6833B3TXF

Table 2. One-year mean yield performance and fiber characteristics for OVT varieties submitted for testing in 2025 averaged across all testing locations (8).

Variety	Lint Yield [†]	Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	\$/lb
PX1140H143-04W3FE	1728	43.7	1.21	4.6	34.3	84.2	51.20
PX1140H152-04W3FE	1689	43.4	1.21	4.6	34.7	84.2	51.33
PX1140F330-04W3FE	1638	43.7	1.20	4.5	33.2	83.9	50.66
PHY357W3FE	1616	43.8	1.19	4.6	34.1	84.2	52.58
DP 2127 B3XF	1589	43.3	1.18	4.8	31.7	84.5	52.51
PHY433W3FE	1563	43.4	1.23	4.4	34.4	84.6	50.66
Amor 9371 B3XF	1553	44.1	1.19	4.5	31.3	84.1	52.42
NG 4626 B3XF	1547	44.8	1.19	4.6	32.3	84.2	51.90
PHY411W3FE	1541	44.5	1.13	4.7	32.5	83.5	52.49
PX1150H164-04W3FE	1541	44.0	1.18	4.5	33.1	83.4	51.84
BX 2634AXTP	1540	45.4	1.14	4.6	31.7	83.5	52.44
PX1140H138-04W3FE	1537	44.4	1.16	4.6	34.2	84.2	51.92
NG 4611 B3XF	1532	45.2	1.21	5.0	33.3	84.1	52.56
PX1140H150-04W3FE	1531	43.4	1.20	4.5	34.0	84.2	51.94
PX1150H167-04W3FE	1524	43.6	1.20	4.2	32.3	83.7	52.51
ST 5931AXTP	1519	41.7	1.23	4.0	32.6	83.9	52.53
DP 2328 B3TXF	1503	44.0	1.18	4.5	30.9	82.8	52.33
BX 2660AXTP	1486	44.3	1.16	4.4	32.3	83.5	52.49
24R6815B3TXF	1485	42.3	1.18	4.3	31.4	82.8	51.74
Armor 25X963 B3TXF	1485	44.5	1.17	4.3	29.9	82.7	52.20
Amor 25X968 B3TXF	1483	42.6	1.15	4.4	31.9	83.1	52.45
PHY415W3FE	1464	43.3	1.21	4.4	34.1	83.9	51.92
BX 2665AXTP	1450	43.4	1.23	4.5	33.6	84.7	50.01
BX 2636AXTP	1417	41.9	1.25	4.5	31.9	84.0	51.25
24R6012B3TXF	1417	42.3	1.17	4.3	31.2	82.8	52.34
DP 2333 B3XF	1416	44.5	1.18	4.7	31.3	83.1	52.38
BX 2662AXTP	1397	43.2	1.14	4.5	32.4	82.7	51.20
BX 2666AXTP	1396	43.2	1.18	4.3	31.3	82.5	50.42
ST 5855AXTP	1386	45.4	1.20	4.1	33.3	83.5	52.54
24R6833B3TXF	1378	41.0	1.23	4.0	33.4	83.2	51.82
ST 4833AXTP	1375	41.5	1.21	4.2	31.6	83.5	51.73
ST 6000AXTP	1369	45.1	1.22	4.2	33.5	84.0	52.56
BX 2643AXTP	1304	42.9	1.18	4.6	30.7	84.1	51.08
ST 4215AXTP	1249	42.6	1.25	4.6	32.6	82.7	52.45
OVERALL MEAN	1490	43.6	1.19	4.5	32.6	83.7	51.89
LSD (0.05)	84	0.56	0.01	0.1	0.4	0.4	1.37
C.V (%)	11	2.6	1.94	5.5	2.7	0.9	5.29

*Yield in bold type are not significantly different from the highest yielding variety.

Table 3. Two-year mean yield performance of varieties cultivated at three locations in the Delta region during 2024 and 2025.

Variety	Sidon		Stoneville		Tunica		Average across location and year
	2024	2025	2024	2025	2024	2025	
Lint Yield (lb lint/acre)							
DP 2127 B3XF	1449	1365	1684	2612	2161	1668	1823
Amor 9371 B3XF	1263	1397	1831	2432	1629	1852	1734
PHY411W3FE	1515	1523	1696	2506	1425	1549	1702
DP 2333 B3XF	1181	1299	1581	2255	1863	1656	1639
PHY415W3FE	1396	1267	1811	2223	1371	1556	1604
ST 5931AXTP	1325	1282	1347	2353	1614	1623	1591
ST 4833AXTP	1016	1034	1606	2113	2007	1623	1566
ST 6000AXTP	1277	1251	1467	2471	1484	1322	1545
DP 2328 B3TXF	1189	1178	1419	2289	1428	1576	1513
ST 5855AXTP	1183	1217	1372	2326	1628	1353	1513
ST 4215AXTP	1349	1106	1630	1890	1629	1260	1477

*Table is sorted based on average lint yield means across location and year.

Table 4. Two-year mean yield performance of varieties cultivated at three locations in the Hill region during 2024 and 2025.

Variety	Brooksville		Starkville		Senatobia		Average across location and year
	2024	2025	2024	2025	2024	2025	
Lint Yield (lb lint/acre)							
PHY415W3FE	1008	1031	1248	1278	1829	1287	1280
PHY411W3FE	800	1027	1101	1536	1514	1261	1206
DP 2328 B3TXF	890	952	1079	1136	1708	1458	1204
DP 2127 B3XF	881	1034	993	1218	1653	1311	1182
ST 5931AXTP	939	900	1224	1408	1349	990	1135
DP 2333 B3XF	788	1146	850	1033	1609	1346	1129
Amor 9371 B3XF	937	1061	858	1142	1581	1176	1126
ST 4833AXTP	873	844	681	1125	1624	1246	1066
ST 5855AXTP	968	1016	873	1017	1423	1064	1060
ST 6000AXTP	738	841	774	1257	1622	927	1026
ST 4215AXTP	795	795	831	880	1431	1118	975

*Table is sorted based on average lint yield means across location and year.

Table 5. 2025 mean yield performance of varieties cultivated at four locations in the Delta Region.

Variety	Lint Yield [†]	Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb
PX1140H152-04W3FE	2002	43.8	1.21	4.8	34.2	84.2	51.33
PX1140H143-04W3FE	1993	43.9	1.21	4.8	34.2	83.9	51.13
PX1140F330-04W3FE	1963	43.5	1.21	4.6	32.8	83.7	48.78
PHY357W3FE	1951	43.9	1.20	4.8	33.5	84.0	52.56
Amor 9371 B3XF	1881	44.0	1.20	4.6	30.9	83.8	52.36
DP 2127 B3XF	1861	43.2	1.18	5.0	31.3	84.3	52.45
ST 5931AXTP	1823	41.6	1.23	4.1	32.5	83.4	52.51
NG 4611 B3XF	1822	45.0	1.22	5.2	33.5	83.9	52.56
BX 2660AXTP	1822	44.1	1.17	4.6	32.2	83.4	52.49
PX1140H150-04W3FE	1817	43.4	1.20	4.9	33.0	83.9	51.27
PX1140H138-04W3FE	1813	44.4	1.16	4.8	33.6	84.1	51.30
24R6815B3TXF	1808	42.2	1.18	4.5	31.0	82.7	51.00
PHY411W3FE	1808	44.2	1.15	4.8	32.2	83.5	52.49
NG 4626 B3XF	1782	44.6	1.20	4.8	32.2	84.4	51.28
PX1150H167-04W3FE	1778	43.6	1.20	4.4	32.0	83.7	52.50
PHY433W3FE	1767	43.4	1.23	4.7	33.5	84.5	48.58
PX1150H164-04W3FE	1757	43.8	1.18	4.5	32.4	83.1	51.22
BX 2634AXTP	1752	45.4	1.15	4.8	31.9	83.5	52.47
Armor 25X963 B3TXF	1740	44.4	1.17	4.4	29.5	82.4	52.14
PHY415W3FE	1714	42.8	1.22	4.6	33.9	83.8	51.31
Amor 25X968 B3TXF	1711	42.6	1.15	4.8	31.7	82.9	52.42
24R6833B3TXF	1670	40.5	1.24	4.1	33.2	83.0	52.51
DP 2328 B3TXF	1660	44.1	1.19	4.7	30.7	82.8	52.30
BX 2662AXTP	1654	43.3	1.14	4.6	32.0	82.3	49.92
DP 2333 B3XF	1641	44.4	1.18	4.9	31.1	83.0	52.35
BX 2636AXTP	1626	42.0	1.26	4.7	31.8	83.9	50.00
ST 6000AXTP	1616	44.9	1.22	4.4	33.4	84.1	52.56
ST 5855AXTP	1615	45.0	1.21	4.3	33.2	83.5	52.53
BX 2665AXTP	1613	42.9	1.24	4.5	33.7	84.7	48.60
BX 2666AXTP	1613	43.2	1.18	4.5	30.9	82.2	48.32
24R6012B3TXF	1586	42.1	1.17	4.5	31.0	82.7	52.33
ST 4833AXTP	1574	41.6	1.22	4.5	31.3	83.4	52.40
BX 2643AXTP	1478	42.7	1.18	4.8	30.8	84.0	49.71
ST 4215AXTP	1431	42.6	1.24	4.8	32.3	82.3	52.39
OVERALL MEAN	1739	43.4	1.20	4.6	32.3	83.5	51.47
LSD (0.05)	121	0.73	0.01	0.2	0.6	0.5	2.39
C.V (%)	10	2.4	2.04	5.5	2.6	0.9	6.58

*Yield in bold type are not significantly different from the highest yielding variety.

Table 6. 2025 mean yield performance of varieties cultivated at all (4) locations in the Hill region.

Variety	Lint Yield [†]	Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb
PX1140H143-04W3FE	1393	43.5	1.21	4.4	34.4	84.5	51.26
PX1140F330-04W3FE	1375	44.0	1.20	4.3	33.6	84.0	52.54
NG 4626 B3XF	1341	45.0	1.18	4.5	32.4	84.1	52.52
PX1150H164-04W3FE	1331	44.3	1.18	4.4	33.9	83.8	52.55
PHY433W3FE	1321	43.5	1.23	4.1	35.2	84.6	52.61
BX 2634AXTP	1313	45.5	1.13	4.5	31.6	83.5	52.41
PX1140H152-04W3FE	1310	43.1	1.21	4.3	35.2	84.2	51.34
PHY357W3FE	1303	43.8	1.19	4.5	34.8	84.5	52.60
BX 2665AXTP	1297	44.0	1.22	4.4	33.4	84.8	51.34
DP 2328 B3TXF	1285	44.0	1.17	4.3	31.2	82.7	52.36
DP 2127 B3XF	1283	43.4	1.17	4.6	32.2	84.8	52.58
PHY411W3FE	1274	44.8	1.12	4.6	32.7	83.5	52.48
DP 2333 B3XF	1271	44.6	1.17	4.6	31.6	83.2	52.42
PX1150H167-04W3FE	1270	43.5	1.19	4.1	32.7	83.7	52.52
PHY415W3FE	1269	43.8	1.20	4.2	34.4	83.9	52.54
Amor 9371 B3XF	1268	44.2	1.18	4.4	31.8	84.5	52.48
PX1140H150-04W3FE	1262	43.4	1.21	4.2	35.1	84.6	52.61
24R6012B3TXF	1259	42.6	1.17	4.2	31.4	82.9	52.36
Armor 25X963 B3TXF	1248	44.6	1.17	4.2	30.3	83.0	52.26
NG 4611 B3XF	1241	45.3	1.21	4.8	33.0	84.2	52.56
Amor 25X968 B3TXF	1237	42.7	1.16	4.2	32.1	83.3	52.48
PX1140H138-04W3FE	1227	44.3	1.16	4.4	34.9	84.3	52.58
24R6833B3TXF	1192	41.6	1.22	3.9	33.6	83.4	51.19
BX 2660AXTP	1188	44.5	1.15	4.3	32.5	83.5	52.49
ST 5931AXTP	1188	41.9	1.23	4.0	32.7	84.3	52.55
BX 2666AXTP	1180	43.2	1.19	4.1	31.7	82.9	52.39
ST 5855AXTP	1168	45.8	1.19	3.9	33.3	83.6	52.54
BX 2636AXTP	1149	41.9	1.25	4.3	32.0	84.1	52.51
BX 2662AXTP	1141	43.1	1.15	4.3	32.8	83.1	52.49
ST 6000AXTP	1138	45.4	1.21	4.0	33.7	83.9	52.56
24R6815B3TXF	1137	42.4	1.18	4.1	31.7	83.0	52.44
BX 2643AXTP	1130	43.0	1.17	4.4	30.7	84.2	52.35
ST 4833AXTP	1124	41.3	1.20	3.9	32.0	83.6	50.84
ST 4215AXTP	1023	42.7	1.26	4.3	33.0	83.2	52.50
OVERALL MEAN	1239	43.7	1.19	4.3	32.9	83.8	52.30
LSD (0.05)	107	0.84	0.02	0.2	0.7	0.5	1.33
C.V (%)	12	2.8	1.84	5.6	2.8	0.8	3.61

*Yield in bold type are not significantly different from the highest yielding variety.

MAFES BLACK BELT BRANCH, BROOKSVILLE

Table 7. Mean yield performance and fiber characteristics for cotton varieties cultivated on a non-irrigated Brooksville silty clay at the MAFES Black Belt Branch near Brooksville, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb	
PX1140H143-04W3FE	1207	42.9	1.19	3.5	34.7	84.0	52.58	
NG 4626 B3XF	1149	44.5	1.15	3.9	32.5	83.6	52.48	
DP 2333 B3XF	1146	43.6	1.17	3.9	31.7	82.7	52.39	
PX1140H150-04W3FE	1123	41.3	1.21	3.4	34.6	84.2	52.59	
PX1140H152-04W3FE	1099	42.2	1.20	3.7	34.7	83.2	52.54	
PHY433W3FE	1082	41.5	1.22	3.5	35.2	84.1	52.58	
PX1140F330-04W3FE	1077	42.5	1.18	3.7	33.8	83.7	52.54	
PX1150H164-04W3FE	1066	43.1	1.16	3.8	33.3	83.3	52.54	
Amor 9371 B3XF	1061	43.7	1.18	3.8	32.0	84.5	52.48	
DP 2127 B3XF	1034	42.3	1.15	3.9	32.2	84.8	52.59	
PHY415W3FE	1031	41.9	1.19	3.5	35.2	83.5	52.55	
BX 2665AXTP	1030	43.7	1.21	3.7	34.3	84.5	52.59	
Armor 25X963 B3TXF	1028	42.9	1.14	3.6	29.9	82.6	52.20	
PHY411W3FE	1027	44.3	1.09	4.1	32.4	83.5	52.51	
PHY357W3FE	1019	43.0	1.17	4.0	35.5	84.6	52.60	
NG 4611 B3XF	1017	44.2	1.20	4.0	33.0	83.6	52.54	
ST 5855AXTP	1016	45.1	1.17	3.3	33.7	83.3	52.53	
24R6012B3TXF	1005	41.3	1.15	3.5	30.6	82.5	52.26	
PX1150H167-04W3FE	958	42.4	1.18	3.8	32.8	83.5	52.53	
DP 2328 B3TXF	952	43.3	1.15	3.9	30.2	82.7	52.33	
BX 2634AXTP	948	44.3	1.11	3.9	30.3	83.4	52.26	
Amor 25X968 B3TXF	921	41.8	1.12	3.4	31.2	82.8	52.43	
PX1140H138-04W3FE	910	42.1	1.15	3.5	34.8	84.5	52.59	
BX 2666AXTP	905	42.9	1.16	3.5	31.2	82.8	52.38	
ST 5931AXTP	900	39.7	1.21	3.2	33.2	83.6	52.53	
BX 2660AXTP	868	43.5	1.13	3.4	32.3	83.2	52.49	
BX 2643AXTP	867	42.8	1.14	3.8	30.3	83.6	52.24	
ST 4833AXTP	844	40.0	1.18	3.1	31.9	82.7	52.47	
ST 6000AXTP	841	44.7	1.20	3.5	34.5	83.5	52.55	
24R6833B3TXF	837	39.8	1.21	3.4	33.1	82.8	52.49	
ST 4215AXTP	795	41.9	1.24	3.6	32.2	82.7	52.45	
BX 2662AXTP	793	41.6	1.12	3.7	32.6	83.1	52.49	
24R6815B3TXF	680	41.3	1.16	3.3	31.4	82.2	52.35	
BX 2636AXTP	645	41.1	1.23	3.4	31.5	83.2	52.44	
OVERALL MEAN	967	42.5	1.17	3.6	32.7	83.4	52.47	
LSD (0.05)	213	1.50	0.03	0.4	1.3	1.0	0.12	
C.V (%)	15	2.6	1.67	7.6	2.9	0.8	0.17	

*Yield in bold type are not significantly different from the highest yielding variety.

BRIAN FYFE FARMS, CLARKSDALE

Table 8. Mean yield performance and fiber characteristics for cotton varieties cultivated on a furrow-irrigated Dubbs very fine sandy loam soil at Brian Fyfe Farms near Clarksdale, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	\$/lb	
PHY357W3FE	2203	41.8	1.24	4.3	33.7	84.2	52.59	
PX1140H143-04W3FE	2109	41.2	1.23	4.3	34.2	84.7	47.60	
PX1140H152-04W3FE	2053	42.0	1.23	4.6	34.5	83.9	47.58	
ST 5931AXTP	2033	40.0	1.27	3.7	31.6	83.5	52.50	
24R6815B3TXF	2030	41.6	1.21	4.3	31.3	83.0	45.73	
PX1140H150-04W3FE	1988	42.1	1.21	4.4	32.4	83.4	47.46	
BX 2636AXTP	1985	41.1	1.29	4.4	31.9	84.1	42.55	
PX1140H138-04W3FE	1972	43.1	1.19	4.3	34.2	84.1	47.56	
PX1140F330-04W3FE	1929	42.1	1.22	4.3	32.7	83.2	37.51	
PHY433W3FE	1870	40.7	1.26	4.3	33.8	84.3	32.58	
Armor 25X963 B3TXF	1859	42.9	1.19	4.2	29.7	82.8	52.19	
Amor 9371 B3XF	1844	41.9	1.22	4.4	30.8	83.4	52.36	
PX1150H164-04W3FE	1802	43.3	1.20	4.1	32.5	82.8	47.48	
DP 2127 B3XF	1801	41.6	1.21	4.7	31.5	84.7	52.51	
PX1150H167-04W3FE	1755	42.1	1.22	4.0	31.9	83.4	52.45	
BX 2662AXTP	1730	42.1	1.17	4.2	32.2	83.1	42.48	
NG 4626 B3XF	1727	43.3	1.22	4.5	32.7	84.6	47.59	
BX 2634AXTP	1721	44.4	1.19	4.6	32.1	84.1	52.54	
24R6833B3TXF	1718	39.1	1.23	3.8	33.3	82.3	52.45	
NG 4611 B3XF	1700	43.2	1.25	4.9	33.9	84.1	52.58	
BX 2666AXTP	1699	42.2	1.22	4.1	31.0	82.0	37.35	
Amor 25X968 B3TXF	1698	42.3	1.18	4.6	31.9	83.6	52.51	
BX 2660AXTP	1668	42.1	1.19	3.9	33.2	83.3	52.53	
PHY411W3FE	1656	42.5	1.16	4.4	32.4	83.1	52.49	
DP 2328 B3TXF	1595	42.6	1.18	4.5	30.2	82.3	52.20	
PHY415W3FE	1585	41.5	1.24	4.2	34.0	83.5	47.55	
ST 4833AXTP	1525	39.9	1.25	4.4	31.9	84.2	52.54	
BX 2665AXTP	1518	41.3	1.26	4.2	33.3	84.2	37.56	
ST 5855AXTP	1498	42.4	1.24	3.8	33.1	82.8	52.53	
ST 4215AXTP	1469	42.0	1.26	4.6	32.6	82.5	52.46	
BX 2643AXTP	1446	41.9	1.21	4.4	31.2	84.2	42.49	
ST 6000AXTP	1420	42.4	1.25	4.2	33.5	84.1	52.57	
DP 2333 B3XF	1358	43.0	1.17	4.8	31.3	83.1	52.34	
24R6012B3TXF	1345	41.0	1.18	4.2	30.8	82.7	52.33	
OVERALL MEAN	1744	42.0	1.22	4.3	32.4	83.5	48.46	
LSD (0.05)	288	1.33	0.03	0.4	1.4	1.0	10.20	
C.V (%)	11	2.3	1.72	6.7	2.8	0.8	14.30	

*Yield in bold type are not significantly different from the highest yielding variety.

MAFES BROWN LOAM BRANCH, RAYMOND

Table 9. Mean yield performance and fiber characteristics for cotton varieties cultivated on a non-irrigated Loring silt loam soil at the MAFES Brown Loam Branch near Raymond, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb	
ST 5855AXTP	1714	47.8	1.17	4.2	33.2	82.6	52.50	
Amor 9371 B3XF	1642	45.3	1.14	4.6	31.5	83.6	52.43	
PX1150H164-04W3FE	1620	45.1	1.14	4.5	32.9	83.2	52.51	
NG 4626 B3XF	1583	45.8	1.16	4.4	32.2	83.0	52.44	
BX 2634AXTP	1580	46.0	1.07	4.6	31.6	82.8	52.41	
Amor 25X968 B3TXF	1542	44.0	1.13	4.4	31.6	83.0	52.44	
DP 2127 B3XF	1528	43.6	1.13	4.9	31.9	83.8	52.53	
NG 4611 B3XF	1526	45.0	1.16	4.9	32.3	82.5	52.45	
DP 2328 B3TXF	1511	45.1	1.16	4.3	31.2	82.1	52.34	
BX 2665AXTP	1507	44.4	1.20	4.6	33.3	84.0	52.56	
PHY433W3FE	1503	46.1	1.18	4.2	36.1	83.2	52.54	
PHY357W3FE	1502	46.2	1.14	4.5	34.1	83.8	52.56	
PX1150H167-04W3FE	1487	44.7	1.16	4.1	31.9	83.3	52.49	
PHY415W3FE	1481	46.4	1.16	4.6	34.5	83.2	52.53	
BX 2666AXTP	1463	43.7	1.18	4.4	32.2	82.4	52.45	
24R6012B3TXF	1456	43.6	1.13	4.3	32.2	82.3	52.36	
ST 5931AXTP	1455	43.3	1.18	4.2	32.5	83.4	52.51	
ST 6000AXTP	1451	46.1	1.18	4.1	33.6	83.2	52.53	
DP 2333 B3XF	1419	45.4	1.14	4.6	31.2	82.4	52.40	
Armor 25X963 B3TXF	1401	44.9	1.12	4.2	29.7	82.2	52.15	
PX1140F330-04W3FE	1389	46.3	1.16	4.6	33.7	83.6	52.56	
BX 2636AXTP	1388	43.0	1.23	4.3	32.6	83.5	52.53	
BX 2643AXTP	1355	43.7	1.14	4.6	30.9	83.8	52.41	
BX 2660AXTP	1350	44.8	1.11	4.4	31.9	82.9	52.48	
PX1140H152-04W3FE	1348	44.1	1.17	4.0	35.1	83.4	52.55	
24R6833B3TXF	1318	42.3	1.18	4.0	33.1	82.5	52.48	
PX1140H143-04W3FE	1302	44.1	1.17	4.4	33.9	84.3	52.60	
ST 4833AXTP	1281	42.1	1.18	3.9	32.3	83.0	52.50	
PX1140H150-04W3FE	1277	44.2	1.15	4.1	35.4	83.7	52.56	
ST 4215AXTP	1276	43.7	1.24	4.3	32.8	81.8	52.45	
PHY411W3FE	1272	45.7	1.10	4.8	32.5	82.8	52.48	
BX 2662AXTP	1266	44.1	1.11	4.5	31.6	83.1	52.45	
PX1140H138-04W3FE	1265	46.4	1.11	4.5	34.0	83.1	52.53	
24R6815B3TXF	1153	42.8	1.14	4.2	31.6	82.3	52.45	
OVERALL MEAN	1430	44.7	1.15	4.4	32.7	83.0	52.47	
LSD (0.05)	203	1.70	0.03	0.3	1.5	1.0	0.12	
C.V (%)	10	2.8	2.14	5.0	3.2	0.8	0.16	

*Yield in bold type are not significantly different from the highest yielding variety.

PACE PERRY FARMS, SENATOBIA

Table 10. Mean yield performance and fiber characteristics for cotton varieties cultivated on a non-irrigated Keyespoint silty clay soil at Pace Perry Farms near Senatobia, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	\$/lb	
BX 2634AXTP	1612	44.7	1.25	4.5	32.8	84.5	52.58	
PX1140F330-04W3FE	1564	42.2	1.24	4.6	35.2	85.4	52.62	
24R6012B3TXF	1521	41.2	1.24	4.7	34.5	84.7	52.61	
PX1140H143-04W3FE	1495	42.3	1.25	4.4	34.4	84.8	52.60	
DP 2328 B3TXF	1458	43.5	1.27	4.6	35.4	84.7	52.62	
BX 2636AXTP	1449	40.7	1.20	5.0	32.9	84.6	52.58	
PX1150H167-04W3FE	1438	42.9	1.22	4.8	34.4	85.2	52.63	
Amor 25X968 B3TXF	1437	42.8	1.25	4.6	34.8	84.6	52.59	
NG 4626 B3XF	1401	44.3	1.28	4.6	35.3	84.4	52.58	
PX1140H138-04W3FE	1392	43.7	1.28	4.6	34.9	85.2	47.63	
PHY433W3FE	1349	42.3	1.26	4.6	35.4	85.7	52.66	
PX1140H152-04W3FE	1347	42.7	1.24	4.8	34.0	85.0	52.63	
DP 2333 B3XF	1346	43.9	1.23	4.8	33.4	84.8	52.59	
PX1140H150-04W3FE	1338	44.1	1.26	4.5	33.4	85.0	52.63	
BX 2643AXTP	1336	41.7	1.24	4.5	34.1	85.0	52.60	
Armor 25X963 B3TXF	1332	44.3	1.26	4.6	36.7	85.2	52.63	
BX 2665AXTP	1322	42.7	1.27	4.4	33.7	84.6	52.58	
DP 2127 B3XF	1311	42.4	1.23	4.5	33.3	84.5	52.59	
PHY357W3FE	1298	42.6	1.26	4.5	34.9	85.3	52.63	
PHY415W3FE	1287	42.8	1.29	4.7	35.1	86.0	46.02	
NG 4611 B3XF	1262	45.2	1.22	4.8	35.1	85.4	52.65	
PHY411W3FE	1261	44.0	1.24	4.8	33.8	84.7	52.61	
ST 4833AXTP	1246	40.9	1.23	4.5	34.4	84.8	52.60	
24R6833B3TXF	1230	41.8	1.24	4.7	32.8	85.3	52.53	
24R6815B3TXF	1211	42.1	1.27	4.7	33.9	85.3	52.64	
Amor 9371 B3XF	1176	42.6	1.23	4.6	34.8	84.8	52.61	
BX 2666AXTP	1174	42.5	1.23	4.7	34.1	84.7	52.60	
BX 2662AXTP	1148	43.0	1.28	4.2	34.6	85.3	47.63	
ST 4215AXTP	1118	41.8	1.28	4.7	34.2	85.6	47.59	
ST 5855AXTP	1064	45.7	1.27	4.3	34.5	85.0	52.61	
PX1150H164-04W3FE	1009	43.7	1.28	4.7	34.4	85.7	52.66	
ST 5931AXTP	990	41.4	1.26	4.5	34.6	85.5	52.64	
BX 2660AXTP	970	44.3	1.24	4.7	33.9	85.5	52.63	
ST 6000AXTP	927	44.7	1.21	4.7	35.2	83.5	52.56	
OVERALL MEAN	1289	43.0	1.25	4.6	34.4	85.0	51.97	
LSD (0.05)	229	1.64	0.03	0.3	1.2	1.1	5.70	
C.V (%)	13	2.7	1.78	4.0	2.4	0.9	7.48	

*Yield in bold type are not significantly different from the highest yielding variety.

PORTER FARMS, SIDON

Table 11. Mean yield performance and fiber characteristics for cotton varieties cultivated on a non-irrigated Dubbs Loam/Tensas Silty Clay Loam at Porter Farms near Sidon, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb	
PX1140F330-04W3FE	1529	45.6	1.18	4.9	32.7	83.8	52.54	
PHY411W3FE	1523	45.5	1.10	5.0	31.3	83.8	52.46	
PHY357W3FE	1495	46.3	1.15	5.2	32.2	83.8	52.51	
PX1140H143-04W3FE	1489	45.8	1.17	5.1	33.6	84.1	52.58	
PX1140H150-04W3FE	1487	45.9	1.18	5.2	34.0	84.5	52.59	
PX1140H152-04W3FE	1464	46.1	1.18	5.0	34.0	84.3	52.59	
PHY433W3FE	1452	45.6	1.20	4.9	33.3	84.8	52.60	
PX1150H164-04W3FE	1402	45.3	1.17	4.5	32.8	83.3	52.50	
Amor 9371 B3XF	1397	46.5	1.15	4.5	29.9	82.8	52.23	
PX1150H167-04W3FE	1368	45.2	1.17	4.7	31.7	83.6	52.50	
DP 2127 B3XF	1365	45.8	1.15	5.1	30.8	83.7	52.38	
PX1140H138-04W3FE	1314	46.4	1.10	5.3	32.6	83.8	52.51	
DP 2333 B3XF	1299	45.4	1.17	5.0	30.3	82.5	52.28	
24R6815B3TXF	1290	44.1	1.13	4.7	30.4	82.4	52.21	
ST 5931AXTP	1282	44.1	1.19	4.4	32.2	83.3	52.49	
BX 2662AXTP	1281	43.5	1.11	4.9	31.4	82.5	52.38	
BX 2665AXTP	1277	45.8	1.22	4.8	34.4	84.6	52.61	
PHY415W3FE	1267	44.7	1.17	4.7	33.4	83.5	52.54	
24R6833B3TXF	1265	41.5	1.21	4.5	33.3	83.3	52.53	
ST 6000AXTP	1250	47.4	1.17	4.9	33.1	84.0	52.55	
BX 2636AXTP	1229	43.8	1.23	5.2	31.6	83.7	52.46	
ST 5855AXTP	1217	47.1	1.18	4.6	33.0	83.9	52.54	
NG 4611 B3XF	1202	47.0	1.17	5.3	33.2	83.7	52.55	
DP 2328 B3TXF	1178	46.2	1.17	4.9	30.2	83.0	52.26	
Armor 25X963 B3TXF	1155	46.3	1.17	4.6	29.6	82.6	52.14	
NG 4626 B3XF	1147	46.1	1.16	5.0	31.8	83.9	52.48	
24R6012B3TXF	1141	43.1	1.14	4.6	30.8	82.6	52.28	
Amor 25X968 B3TXF	1133	44.1	1.11	5.1	30.9	82.6	52.33	
BX 2666AXTP	1127	45.0	1.13	4.8	29.8	82.2	52.18	
ST 4215AXTP	1106	45.5	1.19	5.1	31.3	81.8	52.28	
BX 2660AXTP	1100	46.3	1.17	4.9	32.3	84.0	52.53	
BX 2634AXTP	1095	47.4	1.11	5.0	31.1	83.2	52.44	
ST 4833AXTP	1034	43.7	1.17	4.8	29.8	82.6	52.19	
BX 2643AXTP	986	43.8	1.15	5.1	30.5	83.9	52.33	
OVERALL MEAN	1275	45.3	1.16	4.9	31.8	83.4	52.43	
LSD (0.05)	213	1.36	0.04	0.4	1.2	1.1	0.17	
C.V (%)	12	2.1	2.73	5.4	2.8	1.0	0.23	

*Yield in bold type are not significantly different from the highest yielding variety.

R.R. FOIL PLANT SCIENCE RESEARCH CENTER, STARKVILLE

Table 12. Mean yield performance and fiber characteristics for cotton varieties cultivated on a furrow-irrigated Leeper silty clay loam soil at the MAFES R. R. Foil Plant Science Research Center in Starkville, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb	
PX1140H143-04W3FE	1660	44.9	1.19	4.9	33.3	84.5	52.58	
PX1150H164-04W3FE	1629	45.3	1.19	4.8	32.9	83.7	52.53	
BX 2660AXTP	1564	45.4	1.13	4.7	31.0	83.2	52.39	
PHY411W3FE	1536	45.4	1.12	4.7	30.9	83.2	52.33	
PX1140H152-04W3FE	1477	43.4	1.19	4.9	34.4	84.6	52.60	
PX1140F330-04W3FE	1470	45.0	1.19	4.5	31.8	84.0	52.44	
24R6833B3TXF	1416	42.4	1.22	4.3	33.1	83.8	52.54	
ST 5931AXTP	1408	43.1	1.20	4.3	31.2	84.2	52.49	
PHY357W3FE	1394	43.4	1.18	4.7	33.2	84.2	52.59	
24R6815B3TXF	1391	43.6	1.18	4.4	31.1	83.0	52.39	
PHY433W3FE	1379	44.0	1.23	4.4	33.9	85.3	52.65	
BX 2662AXTP	1358	43.7	1.12	4.8	31.9	82.1	52.44	
PX1140H138-04W3FE	1343	45.3	1.16	5.1	33.9	84.5	52.60	
AMX 12526 B3XF	1318	45.4	1.20	4.6	31.5	84.7	52.55	
PX1140H150-04W3FE	1310	43.8	1.21	4.8	33.9	85.0	52.64	
BX 2665AXTP	1289	45.2	1.21	4.7	31.9	84.8	52.55	
PHY415W3FE	1278	44.0	1.19	4.5	32.2	84.2	52.46	
ST 6000AXTP	1257	46.1	1.22	4.2	32.6	84.4	52.56	
AMX 12677 B3XF	1232	46.9	1.20	5.2	31.8	84.3	52.55	
Armor 25X963 B3TXF	1229	46.4	1.17	4.4	29.7	82.6	52.16	
DP 2127 B3XF	1218	45.4	1.18	4.8	31.2	84.7	52.53	
PX1150H167-04W3FE	1198	44.2	1.18	4.5	31.9	83.5	52.50	
BX 2634AXTP	1187	47.0	1.14	4.7	30.9	83.1	52.34	
BX 2666AXTP	1176	43.8	1.19	4.4	30.5	82.8	52.24	
Amor 9371 B3XF	1142	45.1	1.20	4.5	30.7	84.7	52.40	
DP 2328 B3TXF	1136	44.2	1.18	4.6	30.9	82.6	52.31	
ST 4833AXTP	1125	42.5	1.20	4.2	31.0	84.0	52.47	
24R6012B3TXF	1053	44.3	1.18	4.4	30.3	83.0	52.28	
DP 2333 B3XF	1033	45.6	1.17	5.0	30.2	83.6	52.31	
ST 5855AXTP	1017	44.8	1.21	4.1	32.5	84.2	52.56	
BX 2636AXTP	987	42.9	1.24	4.7	30.9	84.8	52.46	
Amor 25X968 B3TXF	973	42.0	1.17	4.2	32.0	83.1	52.49	
BX 2643AXTP	964	44.0	1.16	4.7	29.7	84.1	52.23	
ST 4215AXTP	880	43.4	1.24	4.6	32.1	83.3	52.49	
OVERALL MEAN	1257	44.5	1.19	4.6	31.8	83.9	52.46	
LSD (0.05)	243	1.93	0.02	0.4	1.3	1.1	0.18	
C.V (%)	13	3.1	1.74	5.9	2.8	0.9	0.24	

*Yield in bold type are not significantly different from the highest yielding variety.

MAFES DELTA BRANCH, STONEVILLE

Table 13. Mean yield performance and fiber characteristics for cotton varieties cultivated on a furrow irrigated Bosket very fine sandy loam soil at the MAFES Delta Branch near Stoneville, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb	
NG 4626 B3XF	2787	46.4	1.21	5.1	31.1	85.6	52.51	
PX1140H152-04W3FE	2757	43.5	1.23	5.0	32.7	85.6	52.61	
BX 2660AXTP	2641	44.2	1.18	4.9	31.1	84.2	52.49	
NG 4611 B3XF	2638	45.4	1.23	5.4	32.1	85.5	52.60	
DP 2127 B3XF	2612	43.4	1.18	5.3	30.3	85.3	52.38	
BX 2634AXTP	2592	45.5	1.16	5.0	31.0	84.2	52.44	
PX1140H143-04W3FE	2575	45.1	1.19	5.1	32.2	84.4	52.55	
PX1140H138-04W3FE	2563	43.9	1.18	4.9	32.7	85.0	52.59	
PX1140F330-04W3FE	2559	42.8	1.22	4.6	31.6	84.6	52.51	
PHY357W3FE	2543	43.8	1.22	5.0	32.9	85.4	52.63	
PHY411W3FE	2506	43.5	1.17	5.0	31.6	83.9	52.48	
ST 6000AXTP	2471	45.3	1.24	4.4	32.5	85.4	52.61	
PX1150H164-04W3FE	2468	43.7	1.19	4.9	31.0	84.0	52.43	
PHY433W3FE	2437	43.5	1.23	5.0	32.0	85.2	52.59	
Amor 9371 B3XF	2432	44.0	1.21	5.0	29.9	85.2	52.31	
PX1150H167-04W3FE	2416	43.7	1.23	4.5	31.6	85.3	52.55	
PX1140H150-04W3FE	2398	42.7	1.21	5.2	31.9	84.7	52.49	
24R6815B3TXF	2387	42.8	1.19	5.0	30.5	83.6	52.33	
ST 5931AXTP	2353	41.0	1.23	4.3	33.1	84.5	52.58	
Amor 25X968 B3TXF	2344	42.2	1.16	4.9	30.7	83.4	52.30	
ST 5855AXTP	2326	45.7	1.21	4.3	32.2	84.0	52.54	
DP 2328 B3TXF	2289	44.4	1.22	4.9	30.4	83.9	52.29	
Armor 25X963 B3TXF	2263	45.0	1.16	4.7	29.0	82.9	52.10	
DP 2333 B3XF	2255	45.4	1.18	5.2	30.1	84.2	52.31	
PHY415W3FE	2223	42.5	1.22	4.9	32.8	85.0	52.59	
BX 2662AXTP	2209	44.6	1.14	4.7	31.2	82.6	52.35	
BX 2666AXTP	2197	43.4	1.20	4.5	30.7	83.3	52.35	
24R6012B3TXF	2184	42.7	1.18	4.7	30.2	83.2	52.24	
BX 2665AXTP	2163	42.4	1.25	4.6	32.6	85.7	52.63	
24R6833B3TXF	2151	41.0	1.27	4.2	32.4	84.5	52.56	
ST 4833AXTP	2113	41.1	1.22	4.6	31.5	84.4	52.46	
BX 2643AXTP	2044	43.2	1.18	5.0	29.4	84.5	52.20	
ST 4215AXTP	1890	42.2	1.27	4.9	32.1	83.7	52.53	
BX 2636AXTP	1888	42.1	1.26	5.1	31.5	85.3	52.54	
OVERALL MEAN	2373	43.6	1.21	4.8	31.4	84.5	52.46	
LSD (0.05)	241	1.45	0.03	0.4	1.0	1.0	0.14	
C.V (%)	7	2.4	1.62	5.0	2.2	0.8	0.18	

*Yield in bold type are not significantly different from the highest yielding variety.

PACE PERRY FARMS, TUNICA

Table 14. Mean yield performance and fiber characteristics for cotton varieties cultivated on a furrow irrigated Keyespoint silty clay soil at Pace Perry Farms near Tunica, MS during 2025.

Variety	Lint Yield [†]		Lint	Length	Mic.	Strength	Uniformity	Loan Value
	lb/acre	%	in.	----	g/tex	----	¢/lb	
Amor 9371 B3XF	1852	43.7	1.22	4.5	33.1	83.7	52.53	
PX1140F330-04W3FE	1834	43.4	1.21	4.6	34.1	83.3	52.54	
PX1140H143-04W3FE	1798	43.5	1.22	4.8	35.9	82.8	52.51	
NG 4626 B3XF	1699	42.9	1.22	4.7	33.1	83.3	52.53	
Armor 25X963 B3TXF	1685	43.3	1.17	4.3	29.8	81.2	52.14	
Amor 25X968 B3TXF	1670	42.0	1.17	4.6	32.7	82.4	52.48	
DP 2127 B3XF	1668	42.2	1.18	4.9	32.4	83.3	52.53	
PX1140H152-04W3FE	1661	43.6	1.20	4.7	35.4	83.1	52.53	
DP 2333 B3XF	1656	43.6	1.19	4.8	32.7	82.3	52.48	
PHY357W3FE	1625	43.6	1.20	4.8	35.1	82.5	52.51	
ST 4833AXTP	1623	41.6	1.22	4.2	32.2	82.4	52.41	
ST 5931AXTP	1623	41.3	1.25	4.0	33.0	82.5	52.49	
BX 2634AXTP	1601	44.3	1.15	4.5	33.3	82.6	52.48	
NG 4611 B3XF	1593	44.7	1.23	5.0	35.0	82.5	52.50	
DP 2328 B3TXF	1576	43.1	1.19	4.6	31.9	82.1	52.44	
PX1150H167-04W3FE	1573	43.5	1.19	4.4	32.7	82.6	52.49	
24R6012B3TXF	1562	41.6	1.20	4.4	32.1	82.4	52.46	
PHY415W3FE	1556	42.6	1.25	4.6	35.4	83.4	52.55	
PHY411W3FE	1549	45.3	1.15	4.8	33.8	83.2	52.54	
PX1140H150-04W3FE	1542	43.0	1.20	4.8	33.7	83.1	52.53	
PX1150H164-04W3FE	1534	43.0	1.18	4.7	33.1	82.3	52.48	
24R6815B3TXF	1527	40.3	1.20	4.0	32.1	81.9	52.43	
24R6833B3TXF	1504	40.3	1.25	3.8	33.9	81.7	52.46	
BX 2665AXTP	1495	42.0	1.25	4.6	34.4	84.4	52.59	
BX 2660AXTP	1493	43.8	1.17	4.6	32.6	82.1	52.45	
PHY433W3FE	1477	43.6	1.25	4.5	34.9	83.6	52.56	
BX 2643AXTP	1437	42.0	1.19	4.9	31.8	83.7	52.46	
BX 2666AXTP	1427	42.5	1.18	4.5	32.2	81.4	52.41	
BX 2662AXTP	1394	43.0	1.16	4.7	33.3	81.0	52.46	
ST 5855AXTP	1353	45.0	1.24	4.4	34.7	83.0	52.53	
PX1140H138-04W3FE	1349	44.3	1.16	4.7	34.9	83.4	52.54	
BX 2636AXTP	1330	41.1	1.24	4.1	32.1	82.5	52.45	
ST 6000AXTP	1322	44.6	1.25	4.1	34.6	83.0	52.53	
ST 4215AXTP	1260	40.8	1.24	4.6	33.1	81.3	52.31	
OVERALL MEAN	1554	42.9	1.20	4.5	33.4	82.6	52.48	
LSD (0.05)	257	1.77	0.03	0.3	1.2	1.1	0.10	
C.V (%)	12	3.0	1.93	4.9	2.6	1.0	0.13	

*Yield in bold type are not significantly different from the highest yielding variety.

Table 15. Response of the cotton varieties in the 2025 Mississippi Agricultural and Forestry Experiment Station Official Variety Trial to inoculation with the bacterial blight bacterium at Stoneville, MS.

Variety	Response	Variety	Response
Armor 9371 B3XF	S	PX1140H152-04W3FE	R
Armor 25X963 B3TXF	R	PX1150H164-04W3FE	R
Amor 25X968 B3TXF	R	PX1150H167-04W3FE	R
24R6012B3TXF	S	PHY357W3FE	R
24R6815B3TXF	R	PHY433W3FE	R
24R6833B3TXF	R	BX 2634AXTP	R
DP 2127 B3XF	S	BX 2660AXTP	R
DP 2328 B3TXF	MR	BX 2662AXTP	R
DP 2333 B3XF	R	BX 2643AXTP	MS
NG4626 B3XF	S	BX 2636AXTP	S
NG4611 B3XF	S	BX 2665AXTP	R
PHY411W3FE	R	BX 2666AXTP	R
PHY415W3FE	R	ST 4215AXTP	R
PX1140F330-04W3FE	R	ST 4833AXTP	R
PX1140H138-04W3FE	R	ST 5855AXTP	R
PX1140H143-04W3FE	R	ST 5931AXTP	R
PX1140H150-04W3FE	R	ST 6000AXTP	MR

Response is presented as a letter assessment based on the percentage of disease post-inoculation as observed throughout the entire plot of each variety. Variety responses listed above are based on disease incidence following inoculation with the bacterial blight causal organism and based on evaluations of observable disease incidence on a 0-100% scale. Responses were assessed as **S** = susceptible; **MS** = moderately susceptible; **MR** = moderately resistance; and **R** = resistant based on the observational response of each variety in a replicated variety trial planted in Stoneville, MS (n=4 replicate plots of each variety). Plants were inoculated with the bacterium that causes bacterial blight and evaluated for the incidence and severity that resulted from bacterial blight. Response of the cotton varieties in the 2025 Mississippi State University Official Variety Trial to inoculation with the bacterial blight bacterium at Stoneville, MS.

The mission of the Mississippi Agricultural And Forestry Experiment Station and the College Of Agriculture And Life Sciences is to advance agriculture and natural resources through teaching and learning, research and discovery, service and engagement which will enhance economic prosperity and environmental stewardship, to build stronger communities and improve the health and well-being of families, and to serve people of the state, the region, and the world.

Scott Willard, Director

mafes.msstate.edu

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.