MISSISSIPPI ANNUAL COOLSEASON FORAGE CROP VARIETY TRIALS, 2022

Information Bulletin 571 • September 2022

MISSISSIPPI'S OFFICIAL VARIETY TRIALS

Mississippi Annual Cool-Season Forage Crop Variety Trials, 2022

MAFES Official Variety Trial Contributors

Joshua White
Variety Testing Manager
Department of Plant and Soil Sciences
Mississippi State University
Brett Rushing
Associate Extension/Research Professor
Coastal Plain Branch Experiment Station
Mississippi State University
Newton, Mississippi

Recognition is given to research technician Melvin Gibson at the South Mississippi Branch Experiment Station for ground preparations. In addition, recognition is given to student worker Joey Hester for his assistance in cultivating, packing, planting, harvesting, and recording plot data.
This document was approved for publication as Information Bulletin 571 of the Mississippi Agricultural and Forestry Experiment Station. It was published by the Office of Agricultural Communications, a unit of the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. It is a contribution of the Mississippi Agricultural and Forestry Experiment Station.
Copyright 2022 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi Agricultural and Forestry Experiment Station.
Find variety trial information online at mafes.msstate.edu/variety-trials.

Mississippi Annual Cool-Season Forage Crop Variety Trials, 2022

INTRODUCTION

Varieties of several forage crops species are evaluated every year in the Mississippi Agricultural and Forestry Experiment Station (MAFES) small-plot forage trials. Entries are provided by seed companies as well as forage and breeding programs at state universities. Experimental and commercially available varieties are tested at one or more locations across Mississippi. All entries from privately owned companies are tested on a fee basis. Some varieties may be added by the MAFES forage variety testing program as a reference for comparison purposes. In addition, varieties of interest may also be added when applicable. Testing during 2020-2021 was conducted at the following locations: Leveck Animal Research Center Forage Unit (Mississippi State campus), Black Belt Branch

Experiment Station (Brooksville, Mississippi), Coastal Plain Branch Experiment Station (Newton, Mississippi), and McNeill Research Unit (McNeill, Mississippi). The ryegrass trial in Brooksville was injured by herbicide drift, likely from aerial application. As a result, data were not included from ryegrass plots in Brooksville.

Data presented in Tables 2-9 are used to evaluate the performance of each forage crop within its respective trial. Mean and harvest comparisons were statistically evaluated by using the least significant difference (LSD) test at the probability level of $\alpha=0.05$. The LSD value represents the minimum amount of dry matter yield that must be observed between any two varieties to determine if the difference was due to the variety's performance alone. Sources of seed are presented in Table 10.

Protocol

Annual ryegrass, small grains, and annual clover trials across the state were established between October and November of 2021. At all locations, soil samples were taken and analyzed by the Mississippi State University Soil Testing Laboratory. Trial areas were amended with lime and fertilized with phosphorus $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ and potassium ($\mathrm{K}_{2} \mathrm{O}$) according to the soil test recommendations for individual species. Grass trials were additionally fertilized with 50 pounds of N per acre at planting and after the first harvest using urea ammonium sulfate ($33-0-0 / 11 \mathrm{~S}$). Plots were 6 feet by 10 feet and planted using an ALMACO (Nevada, Iowa) precision cone seeder on a prepared seedbed. The trial design was a randomized complete block replicated four times. The seeding rates used are presented in Table 1.

Table 1. Recommended seeding rates for cool-season forage crops.

Type/Species	Seed rate
Annual Grasses	lb / A
Rye	100
Oat	100
Triticale	100
Ryegrass	30
Annual Clovers	
Arrowleaf	10
Berseem	25
Balansa	4
Ball	3
Crimson	30
Persian	8

Individual trials were harvested when 75% of the plots achieved 15 inches of growth. All plots were harvested to a 3 -inch stubble height. Plots were harvested using a Winterstieger Cibus F (Winterstieger AG, Ried, Austria) equipped with a forage plot harvester reel type header that collected a 4.8 -foot-by-10-foot swath to calculate
the total yield. A subsample was collected and dried at $130^{\circ} \mathrm{F}$ until constant a weight was achieved to calculate dry matter concentration. Data were analyzed using the General Linear Model (PROC GLM) of SAS and mean separation was conducted using LSD at $\alpha=0.05$.

Annual Ryegrass

Introduction

Annual ryegrass is the most relevant and versatile cool-season annual grass for livestock producers in Mississippi. In pasture and hay systems, annual ryegrass is a popular forage because of its ease of establishment, high nutritive value, high yielding potential, good reseeding ability, and adaptability to a wide range of soil types. Annual ryegrass can be established in pure stands or mixed with small grains and/or clovers for coolseason forage production. For these reasons, annual ryegrass is a staple for many cool-season grazing programs in Mississippi. Recommended planting dates vary by location but usually fall between September and mid-October for prepared seedbeds or late October if overseeded on a warm-season perennial grass pasture. Seeding rates are 30 pounds per acre for pure stands and 20 pounds per acre for mixtures with small grains and/or clovers. Annual ryegrass is very responsive to nitrogen fertilizer, and its use should be split into two applications for grazing systems. Reasonable productivity can be expected from November to May in the southern part of Mississippi and February to May in the northern part of Mississippi. Annual ryegrass should normally be allowed to reach an initial height of at least 10 inches before grazing begins.

Results

Data in Tables 2-5 present the yield performance of ryegrass varieties across Mississippi. The mean yield of the first harvest was $1,124,1,162$, and 1,350 pounds per acre for Starkville, Newton, and McNeill, respectively. The mean yield of the second harvest and subsequent total yield was greatest in McNeill. Newton was the only
location that was only harvested twice, possibly due to dryer conditions combined with sandier soils. McNeill yields were above average for south Mississippi (8,686 pounds per acre), possibly due to relatively high organic matter soils being utilized after forage rotation.

2 Mississippi Annual Cool-Season Forage Crop Variety Trials, 2022

Table 2. Annual ryegrass production by harvest date and total yield in Starkville.

Variety	2/11/22	3/14/22	4/21/22	Total yield
	$1 \mathrm{l} / \mathrm{A}$	$1 \mathrm{l} / \mathrm{A}$	$1 \mathrm{l} / \mathrm{A}$	Ib/A
Andes	477	884	2422	3783
Angusta	669	1177	2785	4632
B-21.1159	763	1008	2605	4376
Bashaw Diploid	1687	1334	2588	5610
Bashaw Tetraploid	1199	1481	3265	5945
Big Boss	774	964	3071	4809
Centurion	1167	908	2482	4557
Diamond T	1555	1270	2608	5433
Double Diamond	993	1091	2675	4759
Earlyploid	1572	1298	2723	5592
Flying A	910	890	2395	4195
FrostProof	1493	1121	2560	5173
GO-MOT	1101	842	1650	3593
Green Farm 2	576	1085	2938	4599
Grits	1814	929	2245	4988
Jackson	1298	1325	3185	5808
KB Shield	1841	932	2487	5261
KB Supreme	1705	999	2176	4879
Lonestar	1798	1087	2824	5710
Mantis	910	1056	2710	4676
Marshall	326	410	1904	2640
ME-4	725	1037	2766	4528
ME-94	712	992	3108	4812
Nelson	963	1018	2714	4695
New Dawn	1050	1073	2849	4972
Prine	1728	1318	2477	5523
Ranahan	1233	1276	2920	5429
Ration	828	851	2538	4216
RM4L	868	1106	2791	4765
TAMTBO	990	804	2720	4515
TAS-TARG-21	1097	1080	2965	5142
Tetrastar	1285	1143	2491	4919
Triangle T	1120	927	2423	4471
Trinova	1412	1067	2602	5081
Winterhawk	1065	870	2444	4379
WMWL	729	795	2579	4103
WMWL-2	1167	1039	2789	4995
Mean	1124	1040	2634	4799
LSD $_{0.05}$	NS	618	791	1812
CV, \%	40	35	18	23

Planted: 10/11/21
Fertilizer: $50 \mathrm{lb} \mathrm{N} / \mathrm{A}(33-0-0 \mathrm{~S})$ after planting and after the first harvest
Herbicide: $1 \mathrm{qt} / \mathrm{A}$ of GrazonNext® (aminopyralid and 2,4-D) after the first harvest
Soil type: Savannah fine sandy loam

Variety	3/7/21	4/12/21	Total yield
	Ib/A	Ib/A	Ib/A
Andes	900	2083	2983
Angusta	1058	2206	3264
B-21.1159	1023	2094	3116
Bashaw Diploid	1332	2455	3787
Bashaw Tetraploid	1115	2431	3546
Big Boss	975	2171	3145
Centurion	1154	2395	3549
Diamond T	1383	1588	2970
Double Diamond	518	2155	2673
Earlyploid	1333	2074	3407
Flying A	1840	2097	3936
FrostProof	1145	1957	3102
GO-MOT	1023	2409	3432
Green Farm 2	1138	2155	3292
Grits	1547	1473	3020
Jackson	1252	2310	3562
KB Shield	1624	2417	4040
KB Supreme	1284	2178	3461
Lonestar	994	2377	3371
Mantis	1189	2284	3473
Marshall	905	2560	3465
ME-4	1041	2304	3345
ME-94	1311	2176	3487
Nelson	1162	2203	3364
New Dawn	1295	1927	3222
Prine	1462	2362	3824
Ranahan	1136	2031	3167
Ration	1071	1942	3012
RM4L	753	2371	3123
TAMTBO	866	2289	3155
TAS-TARG-21	819	2453	3272
Tetrastar	1612	2253	3865
Triangle T	1216	1985	3201
Trinova	1107	2328	3435
Winterhawk	1037	2068	3105
WMWL	1081	2493	3574
WMWL-2	1312	2299	3611
Mean	1162	2199	3361
$\mathrm{LSD}_{0.05}$	645	607	872
CV, \%	34	16	15
Planted: 10/15/21 Fertilizer: $50 \mathrm{lb} \mathrm{N} / \mathrm{A}(33-0-0 \mathrm{~S})$ after planting and after the first harvest Herbicide: $1 \mathrm{qt} / \mathrm{A}$ of GrazonNext® (aminopyralid and 2,4-D) after the first harvest Soil type: Prentiss sandy loam			

4 Mississippi Annual Cool-Season Forage Crop Variety Trials, 2022

Table 4. Annual ryegrass production by harvest date and total yield in McNeil.

Variety	2/1/22	3/29/22	5/13/22	Total yield
	Ib/A	Ib/A	Ib/A	Ib/A
Andes	1529	5166	2587	9283
Angusta	1308	6292	2274	9874
B-21.1159	773	5073	2277	8123
Bashaw Diploid	1703	5660	1372	8735
Bashaw Tetraploid	1299	5753	1437	8489
Big Boss	1221	5368	2377	8966
Centurion	1638	5230	1701	8569
Diamond T	1654	6036	1576	9265
Double Diamond	1001	4425	2570	7996
Earlyploid	1194	6257	1577	9028
Flying A	1652	4917	1396	7965
FrostProof	1059	6054	1936	9049
GO-MOT	1622	4966	3166	9754
Green Farm 2	762	5316	1277	7355
Grits	1567	6841	1663	10071
Jackson	1002	5272	2028	8302
KB Shield	1656	4910	1849	8415
KB Supreme	1344	4342	2084	7770
Lonestar	1620	4951	1706	8277
Mantis	1572	6236	2262	10070
Marshall	1204	3433	3028	7665
ME-4	1892	4378	3099	9369
ME-94	1084	4540	2200	7824
Nelson	1572	5213	1928	8712
New Dawn	1149	5657	1638	8444
Prine	1480	6519	2293	10292
Ranahan	1584	5975	2821	10380
Ration	740	4135	2386	7261
RM4L	1116	5335	2084	8535
TAMTBO	1309	5192	2954	9456
TAS-TARG-21	1357	4986	3754	10097
Tetrastar	1523	5228	1357	8108
Triangle T	1178	5092	2063	8333
Trinova	1356	5887	1403	8646
Winterhawk	1375	4718	2014	8107
WMWL	1539	3844	2135	7518
WMWL-2	1315	3942	2019	7277
Mean	1350	5220	2116	8686
LSD ${ }_{0.05}$	723	1632	691	2117
CV, \%	38	22	23	17

Planted: 10/21/21
Fertilizer: $50 \mathrm{lb} \mathrm{N} / \mathrm{A}(33-0-0 \mathrm{~S})$ after planting and after the first harvest
Herbicide: $1 \mathrm{qt} / \mathrm{A}$ of GrazonNext® (aminopyralid and 2,4-D) after the first harvest
Soil type: Ruston fine sandy loam

Small Grains

Introduction

In Mississippi, small grains (oat, wheat, rye, and triticale) are not used as extensively for forage production as annual ryegrass because of lower annual dry matter yields. However, some small grains tend to be more drought- and cold-tolerant than ryegrass and can provide highly digestible forage when other forages are not available. They can also be used for early grazing during the transition period from summer perennial grasses to annual ryegrass grazing. Cereal rye and triticale have greater cold tolerance among small grains; therefore, they have the potential to continue vegetative growth during the fall and winter months in Mississippi.

Results

Data in Table 5-8 represent forage dry matter yields in Starkville, Brooksville, Newton, and McNeill. The greatest yields for the small-grain test were observed in McNeill . A relatively warm winter with adequate moisture led to above-average yields in the southernmost location. The greatest yields were observed from March to April at all locations. Some disease pressure was noticed in Brooksville (Table 9), and lower-than-normal yields were recorded in Newton. Figures 1 and 2 illustrate the variability of disease pressure observed in Brooksville on small-grain plots.

Table 5. Small grain production by harvest date and total yield in Starkville.

Species	Variety	1/28/22	3/14/22	4/21/22	Total yield
		lb/A	lb/A	lb/A	$1 \mathrm{l} / \mathrm{A}$
OR140760	Barley	969	766	1760	3495
OR140789	Barley	512	268	1346	2126
OR140797	Barley	645	841	2211	3697
Intimidator	Oats	1561	355	953	2869
OR-0367	Oats	1099	946	2595	4640
Ram	Oats	1340	657	2322	4318
Shooter	Oats	1972	547	1191	3710
Trical Swift	Rye	1962	2316	1803	6081
Merlin Max	Triticale	1207	616	1414	3236
Trical 1143	Triticale	1841	565	1713	4119
Trical 342	Triticale	1561	622	1224	3407
Trical 344	Triticale	2538	424	1648	4609
Trical Surge	Triticale	1013	848	1797	3657
SSI30-06	Wheat	579	930	2710	4219
Mean		1343	764	1763	3870
$\mathrm{LSD}_{\text {(009) }}$		1108	536	458	1644
CV, \%		38	35	18	29

Planted: 10/11/21
Fertilizer: 50 lb N/A (33-0-0S) after planting and the first harvest
Herbicide: $1 \mathrm{qt} / \mathrm{A}$ of GrazonNext® (aminopyralid and 2,4-D) after the first harvest
Soil type: Savannah fine sandy loam

Table 6. Small grain production by harvest date and total yield in Brooksville.

Species	Variety	2/4/22	4/4/22	Total yield
		$1 \mathrm{l} / \mathrm{A}$	lb/A	lb/A
OR140760	Barley	417	1366	1783
OR140789	Barley	380	1116	1496
OR140797	Barley	76	820	895
Intimidator	Oats	441	468	909
OR-0367	Oats	110	1616	1726
Ram	Oats	783	1229	2012
Shooter	Oats	950	1432	2382
Trical Swift	Rye	1327	1704	3031
Merlin Max	Triticale	548	964	1512
Trical 1143	Triticale	782	717	1499
Trical 342	Triticale	1285	1187	2472
Trical 344	Triticale	956	1004	1960
Trical Surge	Triticale	884	1709	2592
SSI30-06	Wheat	85	672	757
Mean				
		645	1143	1787
$\mathrm{LSD}_{\text {(109) }}$		975	649	1468
CV, \%		36	39	28

Planted: 10/15/21
Fertilizer: $50 \mathrm{lb} \mathrm{N} / \mathrm{A}(33-0-0 \mathrm{~S})$ after planting and after the first harvest
Herbicide: $1 \mathrm{qt} / \mathrm{A}$ of GrazonNext® (aminopyralid and 2,4-D) after the first harvest
Soil type: Silty clay

Species	Variety	2/1/21	3/7/21	4/12/21	Total yield
		Ib/A	lb/A	Ib/A	Ib/A
OR140760	Barley	871	1128	821	2820
OR140789	Barley	664	1178	1204	3046
OR140797	Barley	473	1036	850	2358
Intimidator	Oats	726	663	166	1554
OR-0367	Oats	581	731	512	1824
Ram	Oats	763	769	482	2013
Shooter	Oats	827	726	445	1998
Trical Swift	Rye	536	1032	303	1870
Merlin Max	Triticale	670	1003	452	2124
Trical 1143	Triticale	661	733	96	1489
Trical 342	Triticale	722	809	169	1700
Trical 344	Triticale	671	764	190	1625
Trical Surge	Triticale	491	932	241	1664
SSI30-06	Wheat	266	845	1037	2148
Mean		637	882	497	2017
$\mathrm{LSD}_{\text {(0.0) }}$		NS	216	228	607
CV, \%		35	17	323	21
Planted: 10/15/21					
Fertilizer: 50 lb N/A (33-0-0S) after planting and after the first harvest					
Herbicide: $1 \mathrm{qt} / \mathrm{A}$ of GrazonNext® (aminopyralid and 2,4-D) after the first harvest					
Soil type: Prentiss Sandy Loam					

Species	Variety	2/1/21	3/39/21	5/13/21	Total yield
		Ib/A	Ib/A	Ib/A	Ib/A
OR140760	Barley	597	5460	867	6924
OR140789	Barley	692	2602	1016	4310
OR140797	Barley	564	3188	1120	4872
Intimidator	Oats	1358	3838	519	5715
OR-0367	Oats	888	6295	577	7760
Ram	Oats	1108	5207	874	7189
Shooter	Oats	1848	3608	1149	6605
Trical Swift	Rye	1256	8332	998	10586
Merlin Max	Triticale	1054	5187	915	7157
Trical 1143	Triticale	989	8313	412	9713
Trical 342	Triticale	405	6791	544	7740
Trical 344	Triticale	1032	6787	473	8292
Trical Surge	Triticale	658	4755	570	5983
SSI30-06	Wheat	701	2546	3120	6368
Mean		939	5208	940	7087
$\mathrm{LSD}_{(0.09)}$		514	1462	372	1734
CV, \%		35	19	27	17
Planted: 10/21/21 Fertilizer: 50 lb N/A (33-0-0S) after planting and after the first harvest Herbicide: $1 \mathrm{qt} / \mathrm{A}$ of GrazonNext® (aminopyralid and 2,4-D) after the first harvest Soil type: Ruston fine sandy loam					

8 Mississippi Annual Cool-Season Forage Crop Variety Trials, 2022

Disease Ratings

	Table 9. Small grain disease rating in Brooksville.	
Species	Variety	Rated 3/21/22
OR140760	Barley	2.50
OR140789	Barley	1.25
OR140797	Barley	2.25
Intimidator	Oats	3.75
OR-0367	Oats	3.00
Ram	Oats	3.50
Shooter	Oats	2.50
Trical Swift	Rye	2.75
Merlin Max	Triticale	2.75
Trical 1143	Triticale	3.50
Trical 342	Triticale	3.25
Trical 344	Triticale	3.25
Trical Surge	Triticale	2.50
SSI30-06	Wheat	2.00
Mean		2.75
LSD		0.88
CV, $\%$		22.00
Planted: $10 / 15 / 21$		
Rating: $1=$ not severe; $5=$ severe		
Soil type: silty clay		

Figure 1. Small grain with severe (5) disease rating.

Figure 2. Small grain with minimal disease (1) rating.

Table 10. Seed sources for the 2020-21 annual cool-season forage variety testing program.

Species/Variety	Seed company/source	Species/Variety	Seed company/source
Annual Ryegrass		Small Grains	
Bashaw	Bashaw Land and Seed Inc.	Shooter	Oregro Seeds
Bashaw	Bashaw Land and Seed Inc.	Intimidator	Oregro Seeds
B-21.1159	Blue Moon Farms	OR-0367	Oregro Seeds
Augusta	DLF	OR140760	Oregro Seeds
Andes	DLF	OR140789	Oregro Seeds
New Dawn	DLF	OR140797	Oregro Seeds
Lonestar	Grassland Oregon	Ragan and Massey	
Tetrastar	Grassland Oregon	Sam Oat	Specialty Seed Inc.
GO-MOT	Grassland Oregon	Trical Superior Forage	
KB Supreme	GS3 Quality Seeds	Trical Superior Forage	
KB Shield	GS3 Quality Seeds	Trical Superior Forage	
Grits	Lewis Seed Co.	Trical Superior Forage	
Centurion	MVS	Trical 1143	Trical Superior Forage
Ranahan	MVS	Trical 344	Srical Superior Forage
Flying	Oregro Seeds	Specialty Seed Inc.	
Winterhawk	Oregro Seeds	Serlin Max	
Diamond T	Oregro Seeds		
TAMTBO	Oregro Seeds		
Triangle T	Oregro Seeds		
Double Diamond	Oregro Seeds		
Prine	Ragan and Massey		
Earlyploid	Ragan and Massey		
RM4L	Ragan and Massey		
Mantis	Smith Seed Services		
Trinova	Smith Seed Services		
Big Boss	Smith Seed Services		
Green Farm 2	Smith Seed Services		
FrostProof	Smith Seed Services		
Marshall	The Wax Company LLC		
Jackson	The Wax Company LLC		
Nelson	The Wax Company LLC		
ME-94	The Wax Company LLC		
ME-4	The Wax Company LLC		
WMWL	The Wax Company LLC		
WMWL-2	The Wax Company LCC		
Ration	TASas Ag Services LLC		
TAS-TARG-21	Thomas Ag Services LLC		

MISSISSIPPI STATE

UNIVERSIT Y m
MS AGRICULTURAL AND FORESTRY EXPERIMENT STATION

The mission of the Mississippi Agricultural and Forestry Experiment Station and the College of Agriculture and Life Sciences is to advance agriculture and natural resources through teaching and learning, research and discovery, service and engagement which will enhance economic prosperity and environmental stewardship, to build stronger communities and improve the health and well-being of families, and to serve people of the state, the region and the world.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.

