

Warm-Season Forage Crop

VARIETY TRIALS, 2014 MISSISSIPPI'S OFFICIAL VARIETY TRIALS

MAFES

MISSISSIPPI AGRICULTURAL & FORESTRY EXPERIMENT STATION . GEORGE M. HOPPER, DIRECTOR

NOTICE TO USER

This Mississippi Agricultural and Forestry Experiment Station Information Bulletin is a summary of forage research intended for the use of colleagues, cooperators, and sponsors. The interpretation of data presented herein may change after additional experimentation. Information included herein is not to be construed either as a recommendation for use or as an endorsement of a specific product by Mississippi State University, the Mississippi Agricultural and Forestry Experiment Station, or the Mississippi State University Extension Service

This report contains data generated as part of the Mississippi Agricultural and Forestry Experiment Station. Joint sponsorship by the organizations listed on page 5 is gratefully acknowledged.

Trade names of commercial and public varieties tested in this report are included only for clarity and understanding. All available names (i.e., trade names, experiment code names or numbers, chemical names, etc.) and varieties, products or source seed in this research are listed on page 5.

Mississippi Warm-Season Forage Crop Variety Trials, 2014

MAFES Official Variety Trial Contributors

Joshua White

Variety Testing Manager Department of Plant and Soil Sciences Mississippi State University Starkville, Mississippi

Rocky Lemus

Associate Extension/Research Professor, Extension Forage Specialist Department of Plant and Soil Sciences Mississippi State University Starkville, Mississippi

Daniel Rivera

Assistant Extension Professor South Mississippi Branch Experiment Station Mississippi State University Poplarville, Mississippi

Find variety trial information online at *mafes.msstate.edu/variety-trials*.

The authors would like to recognize research technicians Melvin Gibson and Roy Gibson at the South Mississippi Branch Experiment Station for ground preparations and herbicide application. We also recognize student workers Mike Hammack, Mike Kennedy, and Timothy Newman for their assistance in cultivating, packing, planting, harvesting, and recording plot data.

This document was approved for publication as Information Bulletin 493 of the Mississippi Agricultural and Forestry Experiment Station. It was published by the Office of Agricultural Communications, a unit of the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine.

Copyright 2015 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi Agricultural and Forestry Experiment Station.

Mississippi Warm-Season Forage Crop Variety Trials, 2014

INTRODUCTION

Varieties of forage crops are evaluated every year in the MAFES small-plot trials. Seed is provided by seed companies and state universities and tested at one or more locations across Mississippi. All entries from privately owned companies are tested on a fee basis. Standard varieties may be added by MAFES as a reference for comparison purposes. In addition, varieties of interest may also be added when applicable. This report contains data collected in 2014 from warm-season perennial and annual forage crops. Seeded bahiagrass (Paspalum notatum) yields include six varieties. Annual warm-season grass entries include nine varieties of sorghum and sorghum/sudangrass hybrids in the sorghum trial and 10 millet varieties in the millet trial. Seeded bahiagrass trials were evaluated only in Starkville and Poplarville, but due to poor stand establishment the Starkville location was replanted in 2014 and given a year to establish. The annual grass trials were evaluated in Starkville only. Seeding rates for each trial are listed in Table 2 and were adjusted for pure live seed (PLS) according to each entry's germination and

Table 1. S	Seeding rates.
Species	Seeding rate
	Ib/A PLS ¹
Bahiagrass	20
Pearl millet	35
Sorghum	20
Sorghum/Sudan	35
¹ Rates listed are the recomme late pure live seed (PLS) for ea	nded seeding rates used to calcu- ach entry.

purity percentage. Rainfall amounts during the 2014 growing season are presented in Table 1. Data presented in Tables 3–5 can be used to evaluate the performance of each forage variety within that test. Comparisons can be statistically evaluated by using the least significant difference (LSD). The LSD represents the amount of yield that must be observed between any two varieties to determine if the differences observed were due to variety variation alone.

	Table 1. Monthly rainfall totals for Poplarville and Starkville, 2014.											
Location	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
	in	in	in	in	in	in	in	in	in	in	in	in
Poplarville	1.32	6.61	4.61	3.11	8.48	9.57	5.00	3.59	1.12	0.96	3.67	6.19
Starkville	1.92	6.71	4.44	10.11	3.98	7.51	2.19	3.29	0.34	2.44	4.20	5.27
MS 30-yr. avg.	5.30	4.70	5.80	5.60	5.10	3.30	4.50	3.80	3.60	3.30	4.80	5.90

BAHIAGRASS

Background

Bahiagrass (Paspalum notatum) is very drought tolerant and can be planted throughout the state. Seeded bahiagrass should be planted between March and May at a seeding rate of 20 pounds per acre. Nitrogen and potassium fertilization are essential for high yields, especially for hay production. Ammonium nitrate (34-0-0) has been the fertilizer of choice for bahiagrass during summer months, but its availability has become limited due to regulations by the Department of Homeland Security. Urea ammonium sulfate is the N fertilizer available to Mississippi's livestock producers for hay and pasture. The new 33-0-0 is a blend of urea and ammonium sulfate that should be just as effective as ammonium nitrate in most situations. These yield results can differ from location to location in the state. To maintain a balance between yields and forage quality in a hay production system, it is recommended to cut hay in 30- to 35-day intervals.

Protocol

The experimental design was a randomized complete block with four replications. Plots were 6 feet ×10 feet in size with 5-foot alleys between plots and 10-foot alleys between blocks. The study was planted on May 29, 2013 and given a year to establish in Poplarville. The initial fertilizer application was 335 pounds of 15-5-10 at planting. Nitrogen was applied after each harvest at a rate of 50 pounds of N per acre using urea-ammonium sulfate (33-0-0S). Plots were harvested when more than 50% of the plots reached a forage height of 12-15 inches or every 4-5 weeks, depending on environmental conditions. Plots were harvested with a "Zero Turn" mower to a 3-inch stubble height and the center 52-inch swath. Yields were recorded and subsamples were collected for dry matter analysis. Data were analyzed using the General Linear Model (PROC GLM) of SAS and mean separation was conducted using the LSD at α = 0.05.

Variety		Harvest date					
	5/6/14	7/3/14	8/14/14	10/17/14			
	lb/A	lb/A	lb/A	lb/A	lb/A		
Argentine	3039	5130	6044	5110	19324		
Pensacola	2111	4185	5288	4276	15860		
TifQuik	2704	5701	5110	4574	18089		
Tifton 9	2184	3939	5082	4428	15633		
UA Sand Mt.	2413	4812	5066	4673	16963		
UF-Riata	2017	4851	6459	4106	17432		
Mean	2411	4769	5508	4528	17217		
LSD _{0.05}	NS	757	NS	NS	2021		
CV%	20	10	14	13	7		

SORGHUM AND SUDANGRASS

Background

The sorghum variety test includes varieties from sorghum and sorghum/sudangrass hybrids. Forage sorghum is usually only used for forage in the form of silage due to the high moisture content. It is not tolerant of acidic soils and is adapted well to sandy loam and clay loam soils with a pH ranging between 6 and 7. When harvested for silage, sorghum seed should be in the dough stage and can possibly be harvested twice in Mississippi if planted by May and weather conditions are favorable. Prussic acid and nitrate accumulations can occur under environmental stress (drought or frost). Sorghum/sudangrass hybrids and sudangrass can be used for pasture, hay, or silage production. They are very responsive to nitrogen and can be rotationally grazed with a high stocking rate to utilize rapid growth. Hay quality is best when harvested at 30 to 40 inches.

Protocol

The experimental design was a randomized complete block with four replications. Plots were 6 feet ×10 feet in size with 3-foot alleys between plots and blocks. Tests were planted only in Starkville. Initial fertilizer application was 335 pounds per acre of 15-5-10 at planting. Plots were harvested when more than 50% of the plots had reached soft dough stage. The entire plot was harvested using a Winterstieger Cibus S (Austria). Yields were recorded and subsamples collected for dry matter determination. Table 4 presents 2014 dry matter yields collected from Starkville. Data was analyzed using the General Linear Model (PROC GLM) of SAS and mean separation using the LSD at $\alpha = 0.05$.

Variety	Harves	t date	Total yield
	7/30/14	9/10/14	
	Ib/A	Ib/A	lb/A
Cowvittles II Forage Sorghum	4018	1028	5047
Forage King SS Hybrid	3869	1847	5716
Greengrazer V	5350	1584	6934
Hay King BMR	4661	2778	7439
Monarch V	3978	1674	5652
Pacesettter BMR	4848	939	5788
Piper	4064	2797	6861
Promax BMR	4343	2585	6928
Sweeter 'N Honey II BMR	4488	1589	6077
Mean	4402	1869	6271
LSD _{0.05}	NS	710	NS
CV%	19	26	17

FORAGE MILLET

Background

Millets are used extensively as grain crops but are becoming increasingly popular as forage crops. Generally, millets perform best in soils with a pH between of 5.5 and 7.5. Pearl millet can have up to 17% crude protein in multiple cut systems. Japanese millet also known as barnyard millet can become weedy if seed is allowed to form. Both, pearl millet and Japanese millet are not usually cut for hay because of the thick stems. Foxtail and proso millets have limited regrowth after the initial harvest, but can produce 2 to 3 tons of dry matter per acre in one cut. Foxtail millet hay should not be fed to horses due to a laxative effect. Nitrogen should be applied at 50 pounds of N per acre increments after planting and harvest. Millets are very productive in pasture and silage systems, but does not usually yield greater than sorghum and sudangrass varieties in normal Mississippi conditions. However, unlike sorghum and sudangrass millets do not accumulate prussic acid.

Protocol

The experimental design was a randomized complete block with four replications. Plots were 6 feet \times 10 feet in size with 3-foot alleys between plots and blocks. Tests were planted only in Starkville. Initial fertilizer application was 335 pounds per acre of 15-5-10 at planting. Plots were harvested when more than 50% of the plots reached 36 inches in height or boot stage. Plots were harvested with a Zero Turn mower to a 3-inch stubble height and the center 52-inch swath. Yields were recorded and subsamples collected for dry matter determination. Table 5 presents 2014 dry matter yields collected from Starkville. Data was analyzed using the General Linear Model (PROC GLM) of SAS and mean separation using the LSD at $\alpha = 0.05$.

Variety	Harves	t date	Total yiel
	7/16/14	8/20/14	
	Ib/A	Ib/A	lb/A
Brown Top	2290	1221	3511
Cropland BMR 4611	1439	_	1439
Dove Proso	2257	_	2257
German Foxtail	2387	-	2387
Hybrid Pearl	1200	_	1200
Japanese	1936	1284	3220
Leafy 23	1656	1103	2759
Leafy 24	1964	1364	3328
Tif leaf 3	2216	1338	3554
White Proso	1851	966	2817
Mean	1920	1213	2647
LSD _{0.05}	419	NS	520
CV%	15	22	13

Species	Variety	Company		
Bahiagrass	Argentine	NA		
	Pensacola	NA		
	Tifton 9	NA		
	TifQuik	NA		
	UF-Riata	NA		
	UA Sand Mountain	NA		
Sorghum, Sorghum/Sudan	Cowvittles II Forage Sorghum	Farm Science Genetics		
	Forage King SS Hybrid	Producers Choice Seed		
	GreenGrazer V	Farm Science Genetics		
	Hay King BMR	King's Agriseeds		
	Monarch V	Cal-West Seeds		
	Pacesetter BMR	Richardson Seeds		
	Piper	NA		
	Promax BMR	Ampac Seed Company		
	Sweeter 'N Honey II BMR	King Seed		
Aillet	Brown Top	NA		
	Cropland BMR 4611	NA		
	Dove Proso	NA		
	German Foxtail	NA		
	Hybrid Pearl	NA		
	Japanese	NA		
	Leafy 23	NA		
	Leafy 24	NA		
	Tif leaf 3	NA		
	White Proso	NA		

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.

We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, or any other characteristic protected by law.