Forage Species Tolerance to Imazapyr and Imazapic
Forage Species Tolerance to Imazapyr and Imazapic

David R. Shaw
Weed Scientist
Department of Plant and Soil Sciences
Mississippi State University

Robert M. Watkins
Development Representative
BASF Corp.

Samuel B. Garris, Jr.
Graduate Research Assistant
Department of Plant and Soil Sciences
Mississippi State University

A. Wayne Cole
Weed Scientist
Department of Plant and Soil Sciences
Mississippi State University

For more information, contact Dr. Shaw by telephone at (662) 325-9575 or by e-mail at dshaw@rstc.msstate.edu.
MAFES Bulletin 1105 was published by the Office of Agricultural Communications, a unit of the Division of Agriculture, Forestry, and Veterinary Medicine at Mississippi State University. June, 2001
Weed control with imazapyr (Arsenal), imazapic (Plateau), and hexazinone (Velpar) was better with summer than with spring applications, but dry weather was a factor in the spring application performance. Imazapic provided less control of horseweed and common cocklebur than imazapyr and hexazinone. Populations, heights, and dry weights of Austrian winterpea, annual ryegrass, hairy vetch, crimson clover, and white clover were higher following spring herbicide application as compared with summer application. Late-season yields were as high with imazapyr treatments as they were with the untreated check for all species in both the spring and summer applications. Yields of annual ryegrass, crimson clover, and white clover were lower following imazapic than following imazapyr with spring applications. There were no differences in yield of Austrian winterpea and hairy vetch across treatments following the summer applications. There were no reductions in the population or height of the spring-planted species (partridge pea, American jointvetch, Kobe lespedeza, and serecia lespedeza) across treatments, except for the spring 1989 application when the crops were planted 2 days after herbicide application. In this test, populations and heights in all treatments were less than the check, 0.125 lb/A of imazapyr, or 0.125 lb/A of imazapic. The latter had the highest populations and heights compared with all other treatments except the untreated check. Field tests have therefore shown that there is tolerance of these species to imazapyr and imazapic, but application timing is important.
Forage Species Tolerance to Imazapyr and Imazapic

INTRODUCTION

In the 1980s, thousands of acres of land were removed from agricultural production and placed in the conservation reserve program (CRP). This has created an interest in managing idle land as a productive wildlife habitat, while still complying with required regulations. Highway departments and utility companies are also interested in managing their rights-of-way for wildlife habitat. These interests have created a need to identify weed control methods that will allow the growth and establishment of preferred wildlife foods. Imazapyr and hexazinone are herbicides that control a broad spectrum of weed species and allow some preferred plant species for wildlife food/forage to grow. When imazapyr was applied to pine (*Pinus taeda* L.) plantations for control of competing herbaceous plants, preferred wildlife food forbs and legumes were twice as prevalent as in the untreated check (3,5). Species transition after imazapyr treatments was from grasses and woody plants to more desirable wildlife foods such as forbs, vines, and legumes, especially lespedeza (*Lespedeza*) species (10). Hexazinone promotes the growth of forbs and legumes when used in pine plantations. When hexazinone was used as a site preparation treatment, there were many legumes present for wildlife forage, with 46% forbs and 22% grass in the ground cover (4). The forbs provided food for whitetail deer (*Odocoileus virginianus*). Grasses provided forage for turkey (*Meleagris gallopavo*) and cover for rodent species. Legumes provided food for bobwhite quail (*Colinus virginianus*). Other research has shown that hexazinone used as a site preparation treatment in pines produced an abundance of legumes such as partridge pea (*Cassia fasiculata* L.) and lespedeza species (6). In application timing studies on a pine plantation, a March or June application of imazapyr controlled competing herbaceous plants well (3). Imazapyr was used to control weeds during fallow in a wheat (*Triticum aestivum* L.)-fallow-wheat rotation in Texas (12). In that study, 0.5 lb/A of imazapyr controlled all weeds at least 80% for 14 months, with no reduction in wheat yields in the following crop. Imazapyr also controlled competing vegetation well late into the season on pastureland that had been planted to pines and had only 14% ground cover (1).

Legumes have shown resistance to the imidazolinone herbicides. Hurst (5) found that legumes, especially lespedeza species, were resistant to imazapyr, and Shaw (8) found that soybeans [*Glycine max* (L.) Merr.] were more tolerant of imazapic than imazapyr. Imazapic has also shown promise as a soybean herbicide for control of sicklepod (*Senna obtusifolia* (L.) Irwin and Barnaby) (8). The imidazolinones are absorbed through both foliage and roots, which results in both preemergence and postemergence activity. Imazapic is translocated in both xylem and phloem to accumulate in the meristematic regions of the plant (11), but it has very limited vertical and lateral movement in the soil (9). Apparently, legumes are tolerant to imazapyr because they can metabolize it to an inactive form (7). Legume tolerance to imazapyr, imazapic, and hexazinone has created an interest in their use on CRP land and rights-of-way to control unwanted vegetation and promote the establishment of plants preferred for wildlife food. The objective of this study was to evaluate partridge pea, American jointvetch (*Aeschynomene americana* L.), Kobe lespedeza (*Lespedeza striata* (Thunb.) H. and A.), sericia lespedeza (*Lespedeza cuneata* (Dumont) G. Don), Austrian winterpea (*Lathyrus hirsutus* L.), annual ryegrass (*Lolium multiflorum* Lam.), hairy vetch (*Vicia villosa* Roth.), crimson clover (*Trifolium incarnatum* L.), and white clover (*Trifolium repens* L.) for tolerance to imazapyr, imazapic, and hexazinone at selected rates and various planting times after application.
Experiments were conducted in 1988 and 1989 on a Smithdale loamy sand (fine-loamy, siliceous, Thermic Typic Paleudult) near Water Valley, Mississippi, and on a Forrestdale silty clay loam (fine, montmorillonitic, Thermic Typic Ochraqualf) near Greenwood, Mississippi. A spring application (March 1988) experiment and a summer application (June 1988) experiment were conducted at both locations. Each test had four spring-planted species (partridge pea, American jointvetch, Kobe lespedeza, and serecia lespedeza) and five fall-planted species (Austrian winterpea, annual ryegrass, hairy vetch, crimson clover, and white clover). Each experiment was conducted with herbicide plots in a randomized complete block design. Each forage species was planted into each herbicide plot.

Several herbicide treatments were used: imazapyr at 0.25, 0.5, 0.75, and 1 lb/A of active ingredient; imazapic at 0.25 and 0.5 lb/A of active ingredient; hexazinone at 1 lb/A of active ingredient; and an untreated check. Treatments were applied in 30 gallons of water per acre using a tractor with a roller pump-powered sprayer.

Each species was planted in 7-inch rows with a no-till grain drill across the herbicide plots. Planting rates varied by species: partridge pea and white clover at 10 lb/A; American jointvetch, Kobe lespedeza, and serecia lespedeza at 20 lb/A; hairy vetch at 30 lb/A; crimson clover at 35 lb/A; annual ryegrass at 40 lb/A; and Austrian winterpea at 50 lb/A.

Weed control for the spring 1988 application at Water Valley was rated visually 20 weeks after treatment for horseweed [Conyza canadensis (L.) Cronq.], common cocklebur (Xanthium strumarium L.), common ragweed (Ambrosia artemisiifolia L.), barnyardgrass [Echinochloa crus-galli (L.) Beauv.], broadleaf signalgrass [Brachiaria platyphylla (L.) Griseb.], and entireleaf morningglory (Ipomoea hederacea var. integrifolia Gray) and (Ipomoea lacunosa L.). The rating scale was 0 to 100, where 0 equaled no control and 100 equaled total control. At Greenwood, horseweed, barnyardgrass, broadleaf signalgrass, and morningglory control were also visually evaluated 20 weeks after the spring herbicide application using the same scale.

Weed control for summer herbicide application was estimated at both locations 6 weeks after treatment. Species rated at Water Valley were horseweed, prickly sida (Sida spinosa L.), common ragweed, barnyardgrass, broadleaf signalgrass, and morningglory. Control of the same species, except common ragweed and prickly sida, was evaluated at Greenwood.

Spring 1988 Application, Fall 1988 Planting

Before the 1988 fall planting in plots treated with herbicides in the spring, plots were mowed and then treated with glyphosate at 1 lb/A of active ingredient to burn down vegetation present. Population and height measurements were determined 7 weeks after planting for each of the five species tested to determine tolerance to the herbicides. These species were harvested twice during the growing season. Six months after planting and 12 months after herbicide applications, a 24-by-10-inch section of each species in each treatment was harvested, and dry weight yield was determined. Eight months after planting and 14 months after herbicide applications, a 24-by-84-inch swath was cut across each species in each treatment, and dry weight yield was again measured.
Since there was no crop emergence of species planted in the spring of 1988, a spring application and spring planting study was initiated at Greenwood and Starkville on soybean fields that had not been tilled after the 1988 harvest. The soil type in Starkville was a Leeper silty clay loam (fine, montmorillonitic, nonacid, Thermic Vertic Haplaquept). Treatments were the same as in 1988, but rates were half the previous rates used and the crop species tested were planted 2 days after herbicide applications. Herbicide application was with a backpack sprayer in 30 gallons of water per acre. The plots were 50 feet by 6 feet, with four replications. Partridge pea, American jointvetch, Kobe lespedeza, and sericia lespedeza were planted, and all plots were mowed and treated with glyphosate at 1 lb/A. Seven weeks after planting, plant populations and heights were measured for each treatment and species. In April, 6 months after planting and 9 months after herbicide applications, a 24-by-10-inch section was harvested from each plot for dry weight yield determination. Eight months after planting and 11 months after application, a 20-by-84-inch swath was harvested from each plot, and dry weight yield was again measured.

In April 1989, 13 months after herbicide application, the spring species were planted in the plots treated with herbicides the previous year. Before emergence, paraquat at 0.4 lb/A of active ingredient was applied to all plots to burn down existing vegetation. Seventeen weeks after planting and 17 months after herbicide application, populations and heights of each species were recorded.

Partridge pea, American jointvetch, Kobe lespedeza, and sericia lespedeza were planted 10 months after herbicide applications. Seventeen weeks after planting and 13 months after applications, populations and heights were recorded for each species and treatment.

Since there was no crop emergence of species planted in the spring of 1988, a spring application and spring planting study was initiated at Greenwood and Starkville on soybean fields that had not been tilled after the 1988 harvest. The soil type in Starkville was a Leeper silty clay loam (fine, montmorillonitic, nonacid, Thermic Vertic Haplaquept). Treatments were the same as in 1988, but rates were half the previous rates used and the crop species tested were planted 2 days after herbicide applications. Herbicide application was with a backpack sprayer in 30 gallons of water per acre. The plots were 50 feet by 6 feet, with four replications. Partridge pea, American jointvetch, Kobe lespedeza, and sericia lespedeza were planted, and all plots were treated with 0.4 lb/A of paraquat to burn down existing vegetation and allow for emergence. Populations and heights of each species were measured 17 weeks after planting. In April, 6 months after planting and 9 months after herbicide applications, a 24-by-10-inch section was harvested from each plot for dry weight yield determination. Eight months after planting and 11 months after application, a 20-by-84-inch swath was harvested from each plot, and dry weight yield was again measured.

In April 1989, 13 months after herbicide application, the spring species were planted in the plots treated with herbicides the previous year. Before emergence, paraquat at 0.4 lb/A of active ingredient was applied to all plots to burn down existing vegetation. Seventeen weeks after planting and 17 months after herbicide application, populations and heights of each species were recorded.

Partridge pea, American jointvetch, Kobe lespedeza, and sericia lespedeza were planted 10 months after herbicide applications. Seventeen weeks after planting and 13 months after applications, populations and heights were recorded for each species and treatment.

Since there was no crop emergence of species planted in the spring of 1988, a spring application and spring planting study was initiated at Greenwood and Starkville on soybean fields that had not been tilled after the 1988 harvest. The soil type in Starkville was a Leeper silty clay loam (fine, montmorillonitic, nonacid, Thermic Vertic Haplaquept). Treatments were the same as in 1988, but rates were half the previous rates used and the crop species tested were planted 2 days after herbicide applications. Herbicide application was with a backpack sprayer in 30 gallons of water per acre. The plots were 50 feet by 6 feet, with four replications. Partridge pea, American jointvetch, Kobe lespedeza, and sericia lespedeza were planted, and all plots were treated with 0.4 lb/A of paraquat to burn down existing vegetation and allow for emergence. Populations and heights of each species were measured 17 weeks after planting. All data were analyzed using analysis of variance, and means were separated by Fisher’s protected Least Significant Difference at the 5% level. Data were combined over locations for analysis, except for weed control and spring 1989 application height data.
RESULTS AND DISCUSSION

Weed control resulting from spring herbicide applications was variable for weed species and locations (Tables 1 and 2). Imazapyr and hexazinone at 1 lb/A controlled horseweed 100% at each location, and several lower rates of imazapyr controlled the weed 100% at Greenwood. Horseweed control was less at Water Valley with imazapic than with other treatments (Table 1); however, at Greenwood, the 0.5-lb/A rate provided control equivalent to the other treatments (Table 2). Barnyardgrass control increased at each location with rates of imazapyr greater than 0.25 lb/A. Imazapic and hexazinone controlled barnyardgrass equally as well as imazapyr. At Water Valley, broadleaf signalgrass control was not different among treatments (Table 1), but at Greenwood, control was enhanced as imazapyr rates increased above 0.25 lb/A (Table 2). Hexazinone provided less control than imazapic and rates of imazapyr less than 0.75 lb/A. All treatments controlled morning-glory 100% at Greenwood (Table 2); however, at Water Valley, imazapyr at 0.75 lb/A, imazapic, and hexazinone resulted in better control than imazapyr at 0.25 lb/A (Table 1). Common cocklebur and common ragweed occurred only at Water Valley. Imazapic at 0.5 lb/A controlled common cocklebur better than imazapyr at rates less than 1 lb/A (Table 1), but there was no difference in control between imazapyr at 1 lb/A and hexazinone at the same rate. The 0.25-lb/A rate of imazapyr was the only treatment with lower common ragweed control than other treatments.

There were no differences in control of morning-glory species, broadleaf signalgrass, and barnyardgrass at Greenwood with July herbicide applications (Table 4). Imazapic controlled horseweed less than the other herbicide treatments at both Greenwood and Water Valley (Tables 3 and 4). Control of common ragweed at Water Valley was less with the 0.25-lb/A imazapyr treatment than with the other treatments, but there were no other weed control differences between rates, chemicals, and species (Tables 3 and 4).

Table 1. Weed control 20 weeks after spring application of herbicides at Water Valley, Mississippi.1

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Horseweed</th>
<th>Common cocklebur</th>
<th>Common ragweed</th>
<th>Barnyardgrass</th>
<th>Broadleaf signalgrass</th>
<th>Morning-glory species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>68</td>
<td>53</td>
<td>50</td>
<td>53</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>93</td>
<td>42</td>
<td>100</td>
<td>59</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>75</td>
<td>48</td>
<td>98</td>
<td>90</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>100</td>
<td>85</td>
<td>95</td>
<td>87</td>
<td>58</td>
<td>71</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>38</td>
<td>66</td>
<td>66</td>
<td>85</td>
<td>59</td>
<td>86</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>23</td>
<td>92</td>
<td>85</td>
<td>95</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>0</td>
<td>70</td>
<td>100</td>
<td>66</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Check</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>31</td>
<td>27</td>
<td>31</td>
<td>37</td>
<td>53</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

1Herbicides were applied on March 29, 1988.
Table 2. Weed control 20 weeks after spring application of herbicides at Greenwood, Mississippi.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate (lb/A)</th>
<th>Horseweed</th>
<th>Barnyardgrass</th>
<th>Broadleaf signalgrass</th>
<th>Morningglory species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>100</td>
<td>69</td>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>100</td>
<td>100</td>
<td>71</td>
<td>100</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>100</td>
<td>95</td>
<td>91</td>
<td>100</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>54</td>
<td>100</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>100</td>
<td>45</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>Check</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>23</td>
<td>31</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1Herbicides were applied on March 22, 1988.

Table 3. Weed control 6 weeks after summer application of herbicides at Water Valley, Mississippi.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate (lb/A)</th>
<th>Horseweed</th>
<th>Common cocklebur</th>
<th>Common ragweed</th>
<th>Barnyardgrass</th>
<th>Broadleaf signalgrass</th>
<th>Morningglory species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>82</td>
<td>100</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>97</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>35</td>
<td>88</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>35</td>
<td>96</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Check</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>15</td>
<td>10</td>
<td>23</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

1Herbicides were applied on July 15, 1988.

Table 4. Weed control 6 weeks after summer application of herbicides at Greenwood, Mississippi.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate (lb/A)</th>
<th>Horseweed</th>
<th>Barnyardgrass</th>
<th>Broadleaf signalgrass</th>
<th>Morningglory species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>86</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>94</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>100</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>99</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>45</td>
<td>100</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>48</td>
<td>100</td>
<td>100.0</td>
<td>99</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>100</td>
<td>99</td>
<td>99.0</td>
<td>100</td>
</tr>
<tr>
<td>Check</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>22</td>
<td>1</td>
<td>.7</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1Herbicides were applied on June 29, 1988.
Plant populations of all five fall-planted species evaluated were equal to or greater than the check with most herbicides and rates, indicating tolerance to the herbicides (Table 5). Exceptions were crimson clover and white clover. Compared with the untreated check, crimson clover populations were reduced by the 0.25-lb/A imazapic and 0.75-lb/A imazapyr treatments, and white clover was reduced by the 1-lb/A imazapyr treatment. There were no differences in populations of Austrian winterpea, hairy vetch, or annual ryegrass between treated and untreated plots. White clover populations were also reduced by the higher rates of imazapyr.

Plant height also indicated tolerance of these species to the herbicides (Table 6). There was no difference in the height of hairy vetch between the treated and untreated check. Austrian winterpea, annual ryegrass, and crimson clover were reduced in height only after treatment with 0.5 lb/A of imazapic as compared with the untreated check. White clover was shorter when treated with 1 lb/A of imazapyr and each rate of imazapic as compared with the untreated check.

Early-season dry weight yields of Austrian winterpea, annual ryegrass, and hairy vetch (6 months after planting and 12 months after herbicide application) did not vary with herbicide treatments (Table 7). Crimson clover yields were less than the untreated check with the 0.5-lb/A imazapic treatment. There were more differences in late-season yields (8 months after planting and 14 months after herbicide application) than early-season yields (Tables 7 and 8). Austrian winterpea had greater yields in plots receiving the 0.75-lb/A imazapyr treatment and the 0.5-lb/A imazapic treatment than the untreated check. Annual ryegrass yields after treatment with imazapyr at rates greater than 0.25 lb/A were higher than the untreated check or imazapic at 0.5 lb/A. There were no reductions in annual ryegrass yields following any herbicide treatment. Yields of hairy vetch and white clover did not vary across treatments, and only the low rate of imazapic reduced yield of crimson clover.

The late-season dry weight yields of all five species evaluated were equal to or greater than the untreated check following all imazapic treatments. The only late-season yields less than the untreated check were in crimson clover following the 0.25-lb/A imazapic treatment.

Table 5. Populations of five plant species planted in fall 1988 and rated 7 weeks after planting and 8 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate (lb/A)</th>
<th>Austrian winterpea (x 1,000)</th>
<th>Annual ryegrass (x 1,000)</th>
<th>Hairy vetch (x 1,000)</th>
<th>Crimson clover (x 1,000)</th>
<th>White clover (x 1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>no.</td>
<td>no.</td>
<td>no.</td>
<td>no.</td>
<td>no.</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>54</td>
<td>508</td>
<td>251</td>
<td>370</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>86</td>
<td>441</td>
<td>229</td>
<td>344</td>
<td>169</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.75</td>
<td>59</td>
<td>564</td>
<td>229</td>
<td>306</td>
<td>159</td>
</tr>
<tr>
<td>Imazapic</td>
<td>1.00</td>
<td>75</td>
<td>417</td>
<td>209</td>
<td>353</td>
<td>88</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>77</td>
<td>423</td>
<td>203</td>
<td>288</td>
<td>153</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>58</td>
<td>442</td>
<td>226</td>
<td>332</td>
<td>140</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>62</td>
<td>394</td>
<td>203</td>
<td>361</td>
<td>115</td>
</tr>
<tr>
<td>Check</td>
<td>54</td>
<td>517</td>
<td>194</td>
<td>411</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>22</td>
<td>213</td>
<td>56</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>
Table 6. Heights of five plant species planted in fall 1988 and measured 7 weeks after planting and 8 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Austrian winterpea</th>
<th>Annual ryegrass</th>
<th>Hairy vetch</th>
<th>Crimson clover</th>
<th>White clover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>14.5</td>
<td>15.5</td>
<td>16.5</td>
<td>5.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>14.6</td>
<td>20.4</td>
<td>16.3</td>
<td>6.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>14.0</td>
<td>17.6</td>
<td>12.3</td>
<td>5.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>14.4</td>
<td>19.3</td>
<td>15.9</td>
<td>4.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>15.1</td>
<td>12.4</td>
<td>13.9</td>
<td>4.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>11.8</td>
<td>8.8</td>
<td>12.9</td>
<td>3.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>14.9</td>
<td>13.1</td>
<td>15.4</td>
<td>6.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>15.4</td>
<td>15.6</td>
<td>16.3</td>
<td>6.1</td>
<td>3.0</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>3.4</td>
<td>6.4</td>
<td>4.7</td>
<td>1.7</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 7. Early-season dry weight yields of five plant species planted in fall 1988 and harvested 6 months after planting and 12 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Austrian winterpea</th>
<th>Annual ryegrass</th>
<th>Hairy vetch</th>
<th>Crimson clover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>3,759</td>
<td>2,596</td>
<td>4,136</td>
<td>17,596</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>4,673</td>
<td>4,780</td>
<td>4,260</td>
<td>16,773</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>4,099</td>
<td>3,831</td>
<td>2,613</td>
<td>14,284</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>4,601</td>
<td>4,475</td>
<td>2,202</td>
<td>13,676</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>4,690</td>
<td>2,327</td>
<td>1,737</td>
<td>11,384</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>4,386</td>
<td>735</td>
<td>2,310</td>
<td>7,303</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>4,905</td>
<td>3,043</td>
<td>2,453</td>
<td>15,143</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>2,936</td>
<td>1,988</td>
<td>2,632</td>
<td>13,730</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>1,875</td>
<td>1,389</td>
<td>2,091</td>
<td>5,876</td>
</tr>
</tbody>
</table>

Table 8. Late-season dry weight yields of five plant species planted in fall 1988 and harvested 8 months after planting and 14 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Austrian winterpea</th>
<th>Annual ryegrass</th>
<th>Hairy vetch</th>
<th>Crimson clover</th>
<th>White clover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>867</td>
<td>3,720</td>
<td>2,501</td>
<td>3,515</td>
<td>1,571</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>1,272</td>
<td>4,046</td>
<td>2,664</td>
<td>3,778</td>
<td>1,340</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>1,618</td>
<td>4,283</td>
<td>2,328</td>
<td>2,748</td>
<td>1,445</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>993</td>
<td>4,157</td>
<td>2,165</td>
<td>3,032</td>
<td>932</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>930</td>
<td>3,169</td>
<td>1,408</td>
<td>1,650</td>
<td>320</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>1,613</td>
<td>1,613</td>
<td>2,217</td>
<td>2,480</td>
<td>199</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>946</td>
<td>3,631</td>
<td>2,743</td>
<td>2,354</td>
<td>1,377</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>541</td>
<td>2,275</td>
<td>2,259</td>
<td>2,869</td>
<td>1,240</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>925</td>
<td>1,458</td>
<td>1,066</td>
<td>1,166</td>
<td>1,067</td>
</tr>
</tbody>
</table>
Plant populations established after herbicide applications in summer 1988 were variable among species and herbicide treatments (Table 9). Hairy vetch and Austrian winterpea populations were not affected by herbicide treatments. Annual ryegrass populations decreased as imazapyr and imazapic rates increased, and populations were significantly less than the untreated check after the 0.5-lb/A imazapic treatment. Crimson clover populations were lower than the check following the 0.5-lb/A imazapic treatment and the 0.5-, 0.75-, and 1-lb/A imazapyr treatments. White clover populations were lower than the untreated check following all imazapyr treatments and the 0.5-lb/A imazapic treatment. Hexazinone did not reduce populations of any of the species evaluated.

Plant heights of the species planted in the fall after summer 1988 herbicide application varied with treatments, except for hairy vetch (Table 10). Austrian winterpea was shorter following the 0.5-lb/A imazapic treatment and the 0.5- and 1-lb/A imazapyr treatments than the untreated check. Annual ryegrass was shorter after the 1-lb/A imazapyr treatment and the 0.25- and 0.5-lb/A imazapic treatments than the untreated check. Crimson clover and white clover were shorter following all imazapyr and imazapic treatments than the check or the hexazinone treatment. Hexazinone did not cause height reduction in the species evaluated.

Early-season dry weight yields (6 months after planting and 9 months after herbicide application) also varied among herbicide treatments, except for Austrian winterpea (Table 11). Annual ryegrass yields were reduced only after imazapic treatments, and crimson clover yields were reduced only after the 0.5-lb/A imazapic treatment. Hairy vetch yields were reduced after the 0.5-lb/A imazapic, 0.75-lb/A imazapyr, and 1-lb/A hexazinone treatments when compared with the untreated check.

Late-season dry weight yields (8 months after planting and 11 months after herbicide application) in all species and in all herbicide treatments were equivalent to the untreated check (Table 12). There were yield reductions of crimson clover and annual ryegrass following the 0.5-lb/A imazapic treatment as compared with the 0.25-lb/A imazapic treatment. Hairy vetch yields were lowest after the 0.25-lb/A imazapyr treatment.

Table 9. Populations of five plant species planted in fall 1988 and rated 7 weeks after planting and 19 weeks after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Plants per hectare (x 1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>Austrian winterpea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no.</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>81</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>71</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>70</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>78</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>129</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>76</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>66</td>
</tr>
<tr>
<td>Check</td>
<td>82</td>
<td>458</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>45</td>
<td>169</td>
</tr>
</tbody>
</table>
Table 10. Heights of five plant species planted in fall 1988 and measured 7 weeks after planting and 19 weeks after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Austrian winterpea</th>
<th>Annual ryegrass</th>
<th>Hairy vetch</th>
<th>Crimson clover</th>
<th>White clover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>11.1</td>
<td>16.6</td>
<td>12.3</td>
<td>3.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>10.9</td>
<td>12.9</td>
<td>11.3</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>11.5</td>
<td>12.4</td>
<td>11.6</td>
<td>3.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>10.3</td>
<td>9.6</td>
<td>12.0</td>
<td>2.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>11.8</td>
<td>7.8</td>
<td>11.9</td>
<td>3.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>9.9</td>
<td>4.8</td>
<td>10.6</td>
<td>2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>12.1</td>
<td>21.5</td>
<td>12.5</td>
<td>6.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>14.3</td>
<td>17.6</td>
<td>12.8</td>
<td>5.6</td>
<td>2.9</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>3.4</td>
<td>5.5</td>
<td>3.3</td>
<td>1.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 11. Late-season dry weight yields of five plant species planted in fall 1988 and harvested 8 months after planting and 11 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Austrian winterpea</th>
<th>Annual ryegrass</th>
<th>Hairy vetch</th>
<th>Crimson clover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>851</td>
<td>3,142</td>
<td>1,345</td>
<td>1,839</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>1,660</td>
<td>3,121</td>
<td>2,643</td>
<td>2,522</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>1,655</td>
<td>4,225</td>
<td>2,338</td>
<td>1,834</td>
</tr>
<tr>
<td>Imazapic</td>
<td>1.00</td>
<td>2,128</td>
<td>3,941</td>
<td>3,158</td>
<td>2,575</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>1,545</td>
<td>1,277</td>
<td>2,680</td>
<td>2,958</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>1,040</td>
<td>878</td>
<td>1,829</td>
<td>972</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>1,261</td>
<td>3,594</td>
<td>2,207</td>
<td>1,597</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>1,818</td>
<td>2,848</td>
<td>2,013</td>
<td>2,591</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>1,204</td>
<td>2,022</td>
<td>1,156</td>
<td>1,782</td>
</tr>
</tbody>
</table>

Table 12. Late-season dry weight yields of five plant species planted in fall 1988 and harvested 8 months after planting and 11 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Austrian winterpea</th>
<th>Annual ryegrass</th>
<th>Hairy vetch</th>
<th>Crimson clover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>851</td>
<td>3,142</td>
<td>1,345</td>
<td>1,839</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>1,660</td>
<td>3,121</td>
<td>2,643</td>
<td>2,522</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>1,655</td>
<td>4,225</td>
<td>2,338</td>
<td>1,834</td>
</tr>
<tr>
<td>Imazapic</td>
<td>1.00</td>
<td>2,128</td>
<td>3,941</td>
<td>3,158</td>
<td>2,575</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>1,545</td>
<td>1,277</td>
<td>2,680</td>
<td>2,958</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>1,040</td>
<td>878</td>
<td>1,829</td>
<td>972</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>1,261</td>
<td>3,594</td>
<td>2,207</td>
<td>1,597</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>1,818</td>
<td>2,848</td>
<td>2,013</td>
<td>2,591</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>1,204</td>
<td>2,022</td>
<td>1,156</td>
<td>1,782</td>
</tr>
</tbody>
</table>
There was little difference among treatments in the populations of species planted in spring 1989 (Table 13). There were no differences in populations of partridge pea and Kobe lespedeza across treatments or when compared with the untreated check. Imazapyr treatments of 0.75 and 1 lb/A reduced populations of American jointvetch more than the 0.25-lb/A imazapyr treatment, but no treatment resulted in a reduction when compared with the untreated check. Serecia lespedeza populations were lower with the 1-lb/A imazapyr treatment than the untreated check.

Plant heights of the species planted in spring 1989 following 1988 herbicide application were not affected by the herbicide treatments (Table 14). This finding indicates a tolerance of these species to any residues that were present 17 months after herbicide application.

Table 13. Populations of four plant species planted in spring 1989 and measured 17 weeks after planting and 17 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Partridge pea</th>
<th>Jointvetch</th>
<th>Kobe lespedeza</th>
<th>Serecia lespedeza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>no. (x 1,000)</td>
<td>no.</td>
<td>no.</td>
<td>no.</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>51</td>
<td>281</td>
<td>68</td>
<td>132</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.5</td>
<td>56</td>
<td>198</td>
<td>69</td>
<td>97</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>68</td>
<td>170</td>
<td>99</td>
<td>182</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.0</td>
<td>65</td>
<td>145</td>
<td>93</td>
<td>79</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>55</td>
<td>212</td>
<td>113</td>
<td>129</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.5</td>
<td>56</td>
<td>266</td>
<td>115</td>
<td>154</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.0</td>
<td>48</td>
<td>225</td>
<td>116</td>
<td>128</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>48</td>
<td>248</td>
<td>67</td>
<td>160</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>25</td>
<td>110</td>
<td>51</td>
<td>78</td>
</tr>
</tbody>
</table>

Table 14. Heights of four plant species planted spring 1989 and measured 17 weeks after planting and 17 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Partridge pea</th>
<th>Jointvetch</th>
<th>Kobe lespedeza</th>
<th>Serecia lespedeza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>55.4</td>
<td>82.0</td>
<td>25.3</td>
<td>25.3</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.5</td>
<td>63.3</td>
<td>85.5</td>
<td>24.0</td>
<td>19.2</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>68.8</td>
<td>71.4</td>
<td>21.4</td>
<td>27.0</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.0</td>
<td>59.4</td>
<td>61.6</td>
<td>24.1</td>
<td>18.0</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>61.4</td>
<td>74.5</td>
<td>27.3</td>
<td>22.0</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.5</td>
<td>73.5</td>
<td>85.6</td>
<td>23.9</td>
<td>26.3</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.0</td>
<td>55.3</td>
<td>77.5</td>
<td>28.4</td>
<td>16.4</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>65.4</td>
<td>86.9</td>
<td>16.3</td>
<td>25.5</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>37.6</td>
<td>38.0</td>
<td>13.2</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Serecia lespedeza was the only spring-planted species to have lower populations than the untreated check following summer 1988 herbicide application (Table 15). Populations of serecia lespedeza were lower after the 0.5-lb/A imazapic treatment and the 0.5-, 0.75-, and 1-lb/A imazapyr treatments than the untreated check or hexazinone treatment. None of the herbicide treatments applied in the summer of 1988 resulted in reduced heights of species planted in spring 1989 (Table 16).

Table 15. Populations of four plant species planted in spring 1989 and measured 17 weeks after planting and 13 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Plants per hectare (x 1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>Partridgepea</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.25</td>
<td>27</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.50</td>
<td>28</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.75</td>
<td>43</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>1.00</td>
<td>47</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.25</td>
<td>48</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.50</td>
<td>32</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>1.00</td>
<td>37</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Table 16. Heights of four plant species planted in spring 1989 and measured 17 weeks after planting and 13 months after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Partridgepea</th>
<th>Jointvetch</th>
<th>Kobe lespedeza</th>
<th>Serecia lespedeza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.125</td>
<td>42.3</td>
<td>37.5</td>
<td>15.0</td>
<td>16.5</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.250</td>
<td>49.0</td>
<td>36.9</td>
<td>21.8</td>
<td>22.5</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.375</td>
<td>50.0</td>
<td>40.9</td>
<td>19.6</td>
<td>25.6</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.500</td>
<td>59.9</td>
<td>44.5</td>
<td>19.5</td>
<td>21.4</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.125</td>
<td>48.4</td>
<td>37.1</td>
<td>18.8</td>
<td>26.8</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.250</td>
<td>36.6</td>
<td>27.8</td>
<td>17.9</td>
<td>16.4</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>0.500</td>
<td>44.5</td>
<td>51.3</td>
<td>8.9</td>
<td>22.9</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>32.3</td>
<td>29.3</td>
<td>16.1</td>
<td>17.4</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>20.8</td>
<td>18.1</td>
<td>7.7</td>
<td>9.8</td>
</tr>
</tbody>
</table>
Populations of species planted in spring 1989 were less in all herbicide treatments than in the untreated check (Table 17). American jointvetch and Kobe lespedeza populations were reduced following increased rates of imazapyr. Partridge pea and serecia lespedeza populations were greater following the 0.125-lb/A imazapic treatment than any of the imazapyr treatments or the 0.5-lb/A hexazinone treatment.

At 2 days after the spring 1989 herbicide application, plant heights of all the 1989 spring-planted species were reduced at one or more rates of each herbicide (Table 18). The 0.125-lb/A imazapic treatment was the only one that did not reduce partridge pea height less than the untreated check. Kobe lespedeza height was reduced as rates of imazapyr and imazapic increased, but its height after the 0.125-lb/A imazapic and 0.125-lb/A imazapric treatments was no different from the untreated check. Serecia lespedeza had reduced height after all treatments except 0.125 lb/A of imazapic at the Starkville location. American jointvetch height was reduced following all herbicide treatments at the Greenwood location, and following the 0.25- and 0.5-lb/A imazapyr treatments at the Starkville location.

Table 17. Populations of four plant species planted in spring 1989 and measured 17 weeks after planting and 17 weeks after herbicide application.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Plants per hectare (x 1,000)</th>
<th>Partridgepea</th>
<th>Jointvetch</th>
<th>Kobe lespedeza</th>
<th>Serecia lespedeza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td></td>
<td>no.</td>
<td>no.</td>
<td>no.</td>
<td>no.</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.125</td>
<td>28</td>
<td>94</td>
<td>38</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.250</td>
<td>22</td>
<td>51</td>
<td>32</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.375</td>
<td>21</td>
<td>48</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.500</td>
<td>18</td>
<td>28</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.125</td>
<td>59</td>
<td>94</td>
<td>47</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.250</td>
<td>38</td>
<td>79</td>
<td>28</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>0.500</td>
<td>34</td>
<td>51</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>93</td>
<td>198</td>
<td>100</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>21</td>
<td>46</td>
<td>27</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

Table 18. Heights of four plant species planted in spring 1989 and measured 17 weeks after planting and 17 weeks after herbicide application at Starkville (S) and Greenwood (G), Miss.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Partridgepea</th>
<th>Jointvetch</th>
<th>Kobe lespedeza</th>
<th>Serecia lespedeza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/A</td>
<td>S cm</td>
<td>G cm</td>
<td>S cm</td>
<td>G cm</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.125</td>
<td>15.5</td>
<td>52.5</td>
<td>19.3</td>
<td>24.8</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.250</td>
<td>21.3</td>
<td>17.5</td>
<td>15.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.375</td>
<td>17.8</td>
<td>28.3</td>
<td>19.8</td>
<td>9.0</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>0.500</td>
<td>15.5</td>
<td>11.8</td>
<td>11.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.125</td>
<td>28.8</td>
<td>59.5</td>
<td>18.5</td>
<td>16.0</td>
</tr>
<tr>
<td>Imazapic</td>
<td>0.250</td>
<td>23.3</td>
<td>38.8</td>
<td>20.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>0.500</td>
<td>21.0</td>
<td>57.5</td>
<td>23.3</td>
<td>16.0</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>42.0</td>
<td>77.0</td>
<td>28.8</td>
<td>48.5</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>17.2</td>
<td>13.2</td>
<td>7.5</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Mississippi State University does not discriminate on the basis of race, color, religion, national origin, sex, age, disability, or veteran status.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.